

Photothermal Patterning Flow Cell

Tech ID: 33827 / UC Case 2022-631-0

ABSTRACT

Researchers at the University of California, Davis have developed a photothermal patterning flow cell that enables precise and efficient patterning of polymer films, compatible with existing cleanroom photolithography equipment.

FULL DESCRIPTION

Researchers at the University of California Davis have developed a patterning flow cell technology that precisely patterns conjugated polymers using a photothermal process. The flow cell, which consists of two glass plates held by negative pressure, is designed to prevent redeposition of dissolved material on the polymer film during the patterning process. The invention can be used with existing cleanroom equipment, enabling the widespread adoption of this patterning method.

APPLICATIONS

- Instrument companies that develop lithography equipment
- ▶ Electronics industry for the development of devices requiring patterned polymer films
- Researchers and institutions that require patterning of conjugated polymers

FEATURES/BENEFITS

- Allows photothermal patterning of conjugated polymers
- Prevents redeposition of dissolved material during the patterning process
- Compatible with existing cleanroom equipment
- Can be used with a variety of polymers and solvent mixtures
- Addresses redeposition of dissolved material on the polymer film during the patterning process
- Generalized patterning method improves efficiency and compatibility with existing equipment

PATENT STATUS

Patent Pending

CONTACT

Victor Haroldsen haroldsen@ucdavis.edu tel: 530-752-7717.

INVENTORS

- Jha, Meghna
- Mogollon Santiana,

Joaquin

Moule, Adam

OTHER INFORMATION

KEYWORDS

cleanroom compatibility,

conjugated polymers,

flow cell technology,

lithography equipment,

patterning efficiency,

photothermal patterning,

polymer film applications,

redeposition prevention

CATEGORIZED AS

Optics and

Photonics

- All Optics and
 Photonics
- Engineering
 - Engineering

Materials &

Chemicals

- Electronics
- Packaging
- Polymers
- ► Thin Films

Nanotechnology

Materials

Semiconductors

- Design and
- Fabrication
- Materials

Sensors &

Instrumentation

Scientific/Research

RELATED CASES

2022-631-0

University of California, Davis	Tel:	\odot 2024, The Regents of the University of California	
Technology Transfer Office	530.754.8649		Terms of use
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucd	avis.edu	Privacy Notice
Davis,CA 95616	https://research.ucdavis.edu/technology-		
	<u>transfer/</u>		
	Fax:		
	530.754.7620		