Request Information

Ultrahigh-Bandwidth Low-Latency Reconfigurable Memory Interconnects by Wavelength Routing

Tech ID: 33805 / UC Case 2021-901-0

ABSTRACT

Researchers at the University of California, Davis, have developed a memory system that uses optical interconnects.

FULL DESCRIPTION

The technology encompasses low latency memory systems and a novel silicon photonics (SiPh) architecture using Wavelength Division Multiplexing based optical interconnects. The silicon photonic interconnects enable optical parallelism and wavelength routing to reduce contention in the entire path from a processor to a memory subarray. The low latency architecture can include three pieces: a contention-less optical data plane, a low-bandwidth electrical control plane, and fine-grained memory banks with integrated photonics. In the data plane, the arrayed wavelength grating router (AWGR)-based optical interconnect can provide a dedicated data path from every requester to every memory bank, with no intermediate buffering, to reduce the queuing and interconnect latency. In the control plane, a low-bandwidth electrical or optical interconnect can communicate the addresses and commands between processors and memory and coordinate the time that a processor sends or receives data. The fine-grained memory banks (also referred to as microbanks) can be directly accessed by the memory controller to allow for massive amounts of parallelism.

APPLICATIONS

- Low Latency Memory System Architecture
- ▶ Silicon Photonics (SiPh) with space saving scalability
- Processor and Memory Interconnect Solution
- Suitable for processor, memory, and system designers and manufacturers

FEATURES/BENEFITS

- High parallelism data communication in memory systems
- ▶ Fast throughput and low energy data communication
- Replaces conventional electrical interconnects

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20250085856	03/13/2025	2021-901

CONTACT

Michael M. Mueller mmmueller@ucdavis.edu tel: .

INVENTORS

- Fariborz, Marjan
- Fotouhl, Pouya
- ▶ Yoo, S.J. Ben

OTHER INFORMATION

KEYWORDS low-latency memory, memory, optical interconnects, Silicon Photonics (SiPh)

CATEGORIZED AS

Optics and

Photonics

- All Optics and
 Photonics
- Computer
 - Hardware
 - Other
- Nanotechnology
 - ► Electronics
 - ▶ Other
- Semiconductors
 - Design and
 - Fabrication

RELATED CASES 2021-901-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks
- Crystal Orientation Optimized Optical Frequency Shifter
- Hyperspectral Compressive Imaging
- Multi-Wavelength, Nanophotonic, Neural Computing System
- Athermal Nanophotonic Lasers
- Ultra-High Resolution Multi-Platform Heterodyne Optical Imaging
- Multi-Wavelength, Laser Array
- Optical Interposers for Embedded Photonics Integration
- Development of a CMOS-Compatible, Nano-photonic, Laser
- ▶ Energy Efficient and Scalable Reconfigurable All-to-All Switching Architecture
- Compressive High-Speed Optical Transceiver
- All-Optical Regenerators
- Tensorized Optical Neural Network Architecture
- Silicon Based Chirped Grating Emitter for Uniform Power Emission
- Energy-Efficient All-Optical Nanophotonic Computing
- ▶ 3D Photonic and Electronic Neuromorphic Artificial Intelligence
- Adapting Existing Computer Networks to a Quantum-Based Internet Future

University of California, Davis	Tel:	\odot 2024 - 2025, The Regents of the	ne University of
Technology Transfer Office	530.754.8649		California
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucdavis.	.edu	<u>Terms of use</u>
Davis,CA 95616	https://research.ucdavis.edu/technology-		Privacy Notice
	<u>transfer/</u>		
	Fax:		
	530.754.7620		