

Request Information

Silent Speech Interface Using Manifold Decoding Of Biosignals

Tech ID: 33771 / UC Case 2024-594-0

ABSTRACT

Researchers at the University of California, Davis have developed a technology that provides a novel method for decoding biosignals into speech, enhancing communication for individuals with speech impairments.

FULL DESCRIPTION

The technology involves a computer-implemented method and system for decoding biosignals (e.g., those indicative of orofacial movements) into speech. It utilizes a unique approach that reduces the computational complexity, and thus the amount of time needed, to decode biosignals and translate them into synthesized speech.

APPLICATIONS

- Assistive technologies for individuals with speech impairments due to ALS, stroke, cancer, and other conditions.
- ▶ Human-computer interaction systems that require robust speech recognition capabilities.
- ▶ Medical devices and applications focused on rehabilitation and communication restoration.
- ▶ Can be used to decode/translate a wide variety of biosignals that are recorded from patients.

FEATURES/BENEFITS

- Addresses the variability of biosignals across individuals and sessions, enhancing accuracy and robustness.
- ▶ Reduces the computational demand and need for extensive retraining typically associated with neural network-based approaches.
- ▶ Improves accessibility for individuals with speech impairments due to various causes, including neurological diseases and physical damage.
- ▶ Facilitates real-time communication by efficiently decoding complex biosignals into speech.
- ▶ Overcomes communication barriers faced by individuals with dysarthria, dysphonia/aphonia, and other speech impairments.
- Addresses the challenge of signal variability due to individual anatomical and physiological differences.
- ▶ Reduces the high computational cost and inefficiency of existing neural network approaches in adapting to new individuals.

CONTACT

Prabakaran Soundararajan psoundararajan@ucdavis.edu tel: .

INVENTORS

Gowda,

Harshavardhana

▶ Miller, Lee M.

OTHER INFORMATION

KEYWORDS

machine learning, voice prostheses, human diagnostics, medical devices, assistive communication

CATEGORIZED AS

- **▶** Communications
 - Other
- **▶** Computer
 - ▶ Hardware
 - ▶ Other
- Medical
 - Devices
 - ➤ Disease: Central Nervous System
 - ▶ Other

PATENT STATUS

Patent Pending

▶ Sensors &

Instrumentation

- ▶ Biosensors
- ▶ Medical
- ▶ Other

RELATED CASES

2024-594-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Novel Auditory Diagnostic
- ▶ Using Automatic Speech Recognition To Measure The Intelligibility Of Speech Synthesized From Brain Signals

University of California, Davis

Technology Transfer Office

1 Shields Avenue, Mrak Hall 4th Floor,

Davis, CA 95616

Tel:

© 2024, The Regents of the University of California

530.754.8649

Terms of use

techtransfer@ucdavis.edu

Privacy Notice

https://research.ucdavis.edu/technology-

transfer/

Fax:

530.754.7620