Request Information Permalink

SELF-SELECTING SYSTEMS FOR MICROBIOME EDITING

Tech ID: 33725 / UC Case 2025-026-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

The invention is a self-selection DNA editing system for modifying microbial communities. It consists of a gene editing tool and a donor DNA with a bacteriocin unit. This unit is integrated into the target cell's genome, providing a survival advantage and ensuring that only the successfully modified cells proliferate. This allows for precise, targeted editing of microbial populations in various settings, including *in vitro* and *in vivo* environments.

SUGGESTED USES

- Modifying a microbial community for therapeutic purposes, such as altering the human gut microbiome to treat disease.
- Editing prokaryotic cells in an industrial setting to enhance fermentation or other biological processes.
- Developing research tools for the study of microbial genetics and community dynamics.
- Creating self-selecting genetic circuits for environmental remediation, such as engineering bacteria to degrade pollutants.

ADVANTAGES

- Precision: The use of bacteriocin-based selection ensures that only the successfully modified cells survive and proliferate, making the process highly specific and efficient.
- Targeted Editing: The system allows for the precise modification of specific microbial species within a complex, mixed community.
- Enhanced Viability: The self-selection mechanism provides a significant survival advantage, leading to higher yields of the desired edited cells.
- Versatility: The system is adaptable for use in a variety of settings, including both in vitro (culture) and in vivo
 (natural environment) applications.

RELATED MATERIALS

CONTACT

Craig K. Kennedy craig.kennedy@berkeley.edu tel:

INVENTORS

» Cress, Brady Fletcher

OTHER INFORMATION

CATEGORIZED AS

- » Biotechnology
 - » Genomics
 - >> Health
- » Environment
 - » Remediation
- » Medical
 - » Gene Therapy
 - » Research Tools
 - >> Therapeutics
- » Research Tools
 - » Nucleic Acids/DNA/RNA
 - >> Vectors

RELATED CASES2025-026-0

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu © 2025, The Regents of the University of California Terms of use | Privacy Notice