Permalink

(SD2022-222) Optimized CAG repeat-targeting CRISPR/cas13d designs

Tech ID: 33694 / UC Case 2021-Z08-1

ABSTRACT

Reseachers from UC San Diego demonstrated a proof of principle for a CAGEX RNAtargeting CRISPR–Cas13d system as a potential allele-sensitive therapeutic approach for HD, a strategy with broad implications for the treatment of other neurodegenerative disorders.

TECHNOLOGY DESCRIPTION

Researchers from UC San Diego leveraged the advantageous compact nature of Ruminococcus flavefaciens XPD3002 (Rfx) CRISPR/Cas13d and engineered a CRISPR/Cas13d-based gene therapy vector packaged into a single vector in both lentiviral and adeno-associated viral delivery vehicles, that silences mutant toxic CAG-expanded (CAGEX) RNA in both human patient iPSC models and an established mouse model of HD.

APPLICATIONS

1) Research tool. To target, locate, and track intracellular or extracellular CAG expansioncontaining RNA transcripts in fixed or living cells and/or in vivo.

2) Biomarker. Can serve as a pharmacodynamic biomarker to assess efficacy of potential therapies that target CAG expansions including small molecules or natural/synthetic compounds and/or any DNA or RNA-targeting gene therapy approach.

CONTACT

Skip Cynar scynar@ucsd.edu tel: 858-822-2672.

OTHER INFORMATION

KEYWORDS

CRISPR

gene therapy, HD therapeutics, Huntington's disease, RNA-targeting

CATEGORIZED AS

- Biotechnology
- Health
- Medical
 - Disease: Central Nervous System
 - Gene Therapy
 - Therapeutics

RELATED CASES

2021-Z08-1

³⁾ Therapeutic for disease. To target and destroy disease-causing RNA transcripts harboring toxic CAG expansions including those that cause HD.

Fig. 1| Development of an RNA-targeting, Cas13d-based gene therapy approach for HD. a, Treatment scheme of our single gene therapy that expresses Cas13d and a gRNA designed to eliminate CAG-expanded HTT *HTT*RNA in both human striatal neuronal cultures derived from patient iPSCs and in the striatum of an established mouse model of HD, zQ175/+. **b**, Diagram of a series of CAG-expanded, RNA-targeting vectors that consists of (1) Cas13d tagged with an HA epitope and (2) one of three U6 promoter-driven Rfx CRISPR-Cas13d gRNAs (denoted as CAG^{EX} gRNA 1–3). **c**, Western blot analysis of polyQ protein from protein lysates isolated from HEK293 cells transfected with a CAG¹⁰⁵ repeat

plasmid and each candidate Cas13d vector. **d**, **e**, RNA dot blot analysis (**d**) and quantification (**e**) of CAG-expanded RNA within HEK293 cells transfected with a CAG¹⁰⁵ repeat plasmid along with a nontargeting control (NT) or CAG¹²⁵, 2 vector (one-way ANOVA, Tukey post hoc test, ********P < 0.0001; n - 1 technical replicates, n - 3 biological replicates). **f**, **g**, RNA dot blot analysis (**f**) and quantification (**g**) of CUG-expanded RNA within HEK293 cells transfected with a CUG¹⁰⁵ repeat plasmid along with a NT or CAG¹²⁵, 2 vector (one-way ANOVA, Tukey post hoc test, n - 3 technical replicates, n - 3 biological replicates).

STATE OF DEVELOPMENT

The UCSD researchers have collected extensive preclinical data in two established models of HD for a new gene therapy strategy that effectively eliminates CAG-expanded pre-mRNA with the use of RNA-targeting CRISPR/Cas13d technology. Specifically, they engineered a potent gene therapy vector that encases Ruminococcus flavefaciens Cas13d, an RNA-targeting enzyme only 2.4 kb in size, and a CAG-expansion RNA-targeting gRNA in a single viral delivery vehicle. They utilized multiple established preclinical models of HD including the Q175/+ mouse model which harbors one human allele of HTT with 175 CAG repeats in exon 1, and a series HD patient iPSC-derived striatal neurons to show both efficacy and safety of the new gene therapy approach both in vivo and in a humanized preclinical model.

Further details are in the manuscript.

INTELLECTUAL PROPERTY INFO

University is securing US patent rights, see:

https://patents.google.com/patent/WO2023154843A2/en?oq=US2023%2f062352

Please contact UCSD is you are interested in licensing this technology for commercial

development.

RELATED MATERIALS

Morelli KH, Wu Q, Gosztyla ML, Liu H, Yao M, Zhang C, Chen J, Marina RJ, Lee K, Jones KL, Huang MY, Li A, Smith-Geater C, Thompson LM, Duan W, Yeo GW. An RNA-targeting CRISPR-Cas13d system alleviates disease-related phenotypes in Huntington's disease models. Nat Neurosci. 2023 Jan;26(1):27-38 - 12/12/2022

University of California, San Diego Office of Innovation and Commercialization 9500 Gilman Drive, MC 0910, , La Jolla,CA 92093-0910 Tel: 858.534.5815 innovation@ucsd.edu https://innovation.ucsd.edu Fax: 858.534.7345 © 2024, The Regents of the University of California Terms of use Privacy Notice