Request Information Permalink

ENERGY-EFFICIENT NONLINEAR OPTICAL MICRO-DEVICE ARRAYS

Tech ID: 33686 / UC Case 2025-015-0

CONTACT

Michael Cohen mcohen@berkeley.edu tel: 510-643-4218.

INVENTORS

>> Wang, Feng

OTHER INFORMATION

CATEGORIZED AS

- » Optics and Photonics
 - » All Optics and Photonics
- » Imaging
 - » Other
- » Materials & Chemicals
 - >> Chemicals
 - » Other
- » Semiconductors
 - » Materials

RELATED CASES

2025-015-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

Optical neural networks (ONNs) are a promising computational alternative for deep learning due to their inherent massive parallelism for linear operations. However, the development of energy-efficient and highly parallel optical nonlinearities, a critical component in ONNs, remains an outstanding challenge.

To address this situation, researchers at UC Berkeley and Berkeley National Lab developed a nonlinear optical microdevice array (NOMA) compatible with incoherent illumination by integrating the liquid crystal cell with silicon photodiodes at the single-pixel level. The researchers fabricated NOMA with over half a million pixels, each functioning as an optical analog of the rectified linear unit at ultralow switching energy down to 100 femtojoules/pixel. The team demonstrated an optical multilayer neural network.

This work holds promise for large-scale and low-power deep ONNs, computer vision, and real-time optical image processing.

SUGGESTED USES

>>

Large-scale and low-power deep optical neural networks: The array's design is ideal for building expansive and energy-efficient neural networks that use light for computation.

>>

Computer vision: The NOMA can be applied in systems that require fast and efficient processing of visual data.

>>

Real-time optical image processing: The device's high-speed, parallel processing capabilities make it suitable for applications needing instantaneous image manipulation and analysis.

ADVANTAGES

>>

Ultralow energy consumption: Each pixel operates at a remarkably low switching energy of 100 femtojoules, making the device highly energy-efficient.

>>

High parallelism and scalability: The array contains over half a million pixels, enabling massive parallel operations, which is crucial for deep learning and other computationally intensive tasks.

>>

Integration with incoherent light: The device's compatibility with incoherent illumination expands its usability and simplifies system design.

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Apparatus and Method for 2D-based Optoelectronic Imaging

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2025, The Regents of the University of California

Terms of use | Privacy Notice