Request Information

Permalink

LARGE AREA, HIGH RESOLUTION PROJECTION LITHOGRAPHY SYSTEM WITH MOVING OPTICS

Tech ID: 33679 / UC Case 2025-011-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

Current methods for 3D printing high-resolution, large-scale designs often face a trade-off between feature size and build area, limiting the scalability of intricate structures. This invention developed by UC Berkeley researchers addresses this by providing a scanning projection system and related method that enables high-resolution, large-scale 3D printing. The system achieves this by employing an advanced optical train with moving optics to project a final image onto a curable resin located on a projection plane. The optical system includes an illumination device, a collimating lens, a first movable reflection mirror, a movable focusing lens, a second movable reflection mirror, and a movable projection lens. By mounting one or more parts of this system on motion stages, the system can scan and project a final image across a large area while maintaining a fine feature size (e.g., 20 micrometers). This approach offers superior resolution and scalability compared to fixed-optics systems, potentially enabling the fabrication of complex structures for applications previously constrained by size or detail limitations.

SUGGESTED USES

>>

Fabrication of Microfluidic Devices for lab-on-a-chip applications.

>>

Creation of Large-Scale Optical Components such as lenses or diffractive elements.

>>

Production of High-Resolution Molds and Tooling for micro-replication.

>>

Additive Manufacturing of detailed medical implants or prosthetics.

>>

Development of Advanced Materials with precisely structured internal geometries (e.g., metamaterials).

ADVANTAGES

>>

High Resolution Over Large Area: The scanning capability combined with the sophisticated optical train allows for consistent, high-resolution feature sizes (e.g., 20µm) across a much larger build area than conventional systems.

>>

Improved Scalability: The moving optics and scanning method overcome the fundamental size limitations of fixed-optics projection systems, enabling the fabrication of truly large-scale high-resolution parts.

CONTACT

Michael Cohen mcohen@berkeley.edu tel: 510-643-4218.

INVENTORS

>> Zheng, Xiaoyu "Rayne"

OTHER INFORMATION

CATEGORIZED AS

- » Optics and Photonics
 - » All Optics and Photonics
- » Nanotechnology
 - >> Tools and Devices
- » Semiconductors
 - » Design and Fabrication
- » Engineering
 - >> Other

RELATED CASES

2025-011-0

>>

Enhanced Fabrication Speed: The projection lithography approach allows for curing an entire cross-sectional layer simultaneously, potentially increasing build speed for large objects compared to point or line-scanning methods.

>>

System Flexibility: The movable components provide opportunities for dynamic adjustments and error correction during the printing process.

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Inverse Designing Metamaterials With Programmable Nonlinear Functional Responses
- ▶ Method To Inverse Design Mechanical Behaviors Using Artificial Intelligence

University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2025, The Regents of the University of California

Terms of use | Privacy Notice