UCI Beall Applied Innovation

Research Translation Group

Research Translation Group

Available Technologies

Contact Us

Request Information

Permalink

Microporous Layer/Catalyst Layer Integration For Electrolyzers

Tech ID: 33662 / UC Case 2024-924-0

BRIEF DESCRIPTION

This invention combines the attributes of existing catalyst layer architectures to optimize reactions in solid polymer membrane electrolyzers.

FULL DESCRIPTION

Researchers at UCI have developed a technology that integrates the catalyst layer and microporous layer in electrolyzers, aiming for both high electrochemical surface area and electrical conductivity. The traditional catalyst-coated membrane architecture is enhanced by affixing needles to microporous layers that electrically tether the catalyst layer and the microporous layer, a process comparable to an internal electrochemical "welding".

SUGGESTED USES

>> Can be utilized in solid polymer membrane water electrolyzers, including proton exchange membrane water electrolyzers and anion exchange membrane water electrolyzers

ADVANTAGES

- >> Combines the advantages of catalyst-coated membranes and porous transport electrodes
- >> Increase in electrical conductivity in comparison to tradition setups
- >> Potentially reduces the cost of operation of solid polymer membrane water electrolyzers
- » Allows for decrease in catalyst loadings while preserving electrical conductivity

PATENT STATUS

Patent Pending

CONTACT

Richard Y. Tun tunr@uci.edu tel: 949-824-3586.

OTHER INFORMATION

CATEGORIZED AS

» Energy

» Other

RELATED CASES

2024-924-0

UCI Beall Applied Innovation

5270 California Avenue / Irvine,CA 92697-7700 / Tel: 949.824.2683

© 2024, The Regents of the University of California Terms of use Privacy Notice