

# Novel Tumor-Specific Fas Epitope Targeting Antibodies

Tech ID: 33636 / UC Case 2023-9AL-0

## ABSTRACT

Researchers at the University of California, Davis have developed a unique approach to target solid tumors using novel Fas-targeting antibodies designed for improved selectivity and efficacy in immunotherapy.

#### **FULL DESCRIPTION**

Fas levels remain elevated in various solid tumor types. Furthermore, the full efficacy of CAR-T strategies also relies on Fas-dependent bystander killing of tumor cells. Hence, a series of tumor-specific Fas-targeting antibodies have been developed in both monospecific and bispecific formats. These antibodies demonstrate unmatched specificity to ovarian and other solid tumors expressing hypo or non-glycosylated form of Fas receptor, distinguishing them from engaging T-cells expressing the fully glycosylated form of Fas. This selective targeting facilitates apoptosis in tumor cells without compromising immune homeostasis, offering a potent and safer alternative to cancer treatment.

Bispecific antibodies comprising antibodies to Fas and co-targeting ovarian tumoroverexpressing antigens have been developed. The anti-tumor antigen component of the bispecific antibody finds an anchor on the surface of ovarian cancer cells through high affinity binding to the tumor-specific antigen. This additional mechanism further restricts cell deathinducing agonist activity of anti-Fas antibody (selectively targeting non-glycosylated receptor) to the antigen-enriched ovarian tumor microenvironment, resulting in an-avidity optimized bispecific binding and higher order Fas apoptotic signaling only in tumor cells but not in healthy cells or T-cells expressing fully glycosylated Fas.

#### **APPLICATIONS**

Increased selectivity for tumor cells over healthy cells and T-cells, reducing potential side effects.

Capability to induce apoptosis specifically in solid tumors, including ovarian, TNBC and other tumor types, through targeting non-glycosylated Fas receptors.

Enhanced tumor specificity and efficacy through bispecific format targeting both Fas and tumor-overexpressed antigens.

Addresses the limitations of current immunotherapies by instigating tumor cytotoxicity in solid "cold" tumor types having limited immune infiltration.

#### **FEATURES/BENEFITS**

A solution for low clinical response rates of existing immunotherapies and CAR-T strategies in solid tumors.

Overcomes the problem of effective immune effector cell infiltration in solid tumors.

## CONTACT

Raj Gururajan rgururajan@ucdavis.edu tel: 530-754-7637.



#### **INVENTORS**

► Tushir-SINGH,

Jogender

#### OTHER INFORMATION

#### **CATEGORIZED AS**

Medical

Other

► Therapeutics

**RELATED CASES** 

2023-9AL-0

▶ Versatility of bispecifics combining Fas antibody with an antibody to a second tumor

specific antigen to target different types of tumors.

# **PATENT STATUS**

Patent Pending

# **ADDITIONAL TECHNOLOGIES BY THESE INVENTORS**

▶ Engineered Hcmv Protein-Derived Variants As Dr5 Agonist Immunotherapeutics For Solid And Pediatric Tumors

| University of California, Davis        | Tel:                                     | © 2024, The Regents of the Universit | y of California |
|----------------------------------------|------------------------------------------|--------------------------------------|-----------------|
| Technology Transfer Office             | 530.754.8649                             |                                      | Terms of use    |
| 1 Shields Avenue, Mrak Hall 4th Floor, | techtransfer@ucda                        | vis.edu                              | Privacy Notice  |
| Davis,CA 95616                         | https://research.ucdavis.edu/technology- |                                      |                 |
|                                        | <u>transfer/</u>                         |                                      |                 |
|                                        | Fax:                                     |                                      |                 |
|                                        | 530.754.7620                             |                                      |                 |