UC RIVERSITY OF CALIFORNIA Research and Economic Development

Request Information

OTC Website

Find Technologies

Permalink

Self-Regenerative Ni-Doped Catio3/Cao For Co2 Capture And Utilization

Tech ID: 33607 / UC Case 2024-705-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20250108354	04/03/2025	2024-705
Additional Patent Pending				
FULL DESCRIPTION				
Background				
Integrated CO ₂ capture and dry reforming of methane (ICCDRM) is a process that tackles two important greenhouse gases - CO ₂ and				
methane (CH ₄) - transforming them into useful syngas. Nickel/Calcium Oxide (Ni/CaO) based dual functional materials (DFM) are widely				
evaluated for integrated CO ₂ capture	e and utilization (ICCU), especially in	processes like dry reformir	ng of methane (DRM),	where CO ₂ and

CH₄ are converted into syngas. However, these conventional systems face significant challenges resulting in significant reduction in CO₂ capture and overall efficiency of ICCDRM, especially because of:

- Coke deposition on the Ni catalyst that reduces the efficacy of the catalyst; and,
- Stability of CaO resulting in pore collapse, surface area loss and/or agglomeration of Ni nanoparticles.

Invention

Prof. Abdul-Aziz and her team at UCR have developed a novel multifunctional material (MFM) designed to enhance the efficiency and stability of ICCDRM processes. The team successfully synthesized Ni-doped CaTiO₃/CaO nanocomposite, addressing key challenges associated with conventional Ni/CaO systems. The MFM effectively addresses the limitations of conventional systems, showcasing its potential for practical applications in carbon capture and utilization.

CONTACT

Venkata S. Krishnamurty venkata.krishnamurty@ucr.edu tel: .

OTHER INFORMATION

KEYWORDS

Integrated carbon capture and

utilization, ICCU, ICCDRM, dry

reforming of methane, DRM,

multifunctional materials, syngas,

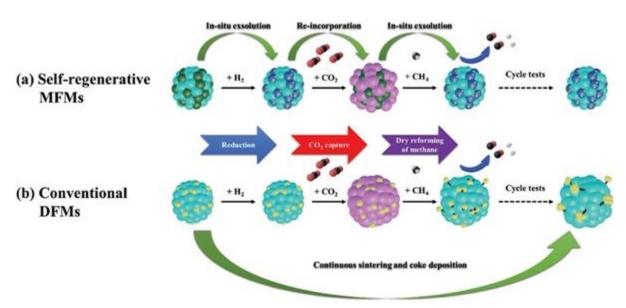
greenhouse gases, GHG

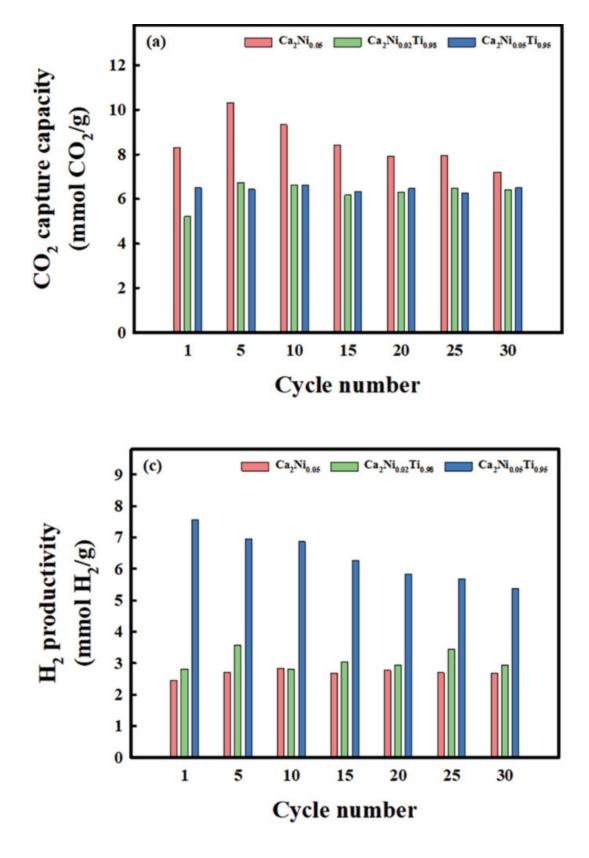
CATEGORIZED AS

Energy

- Hydrocarbon
- Environment

Remediation


Materials & Chemicals
Chemicals


Nanotechnology

Materials

RELATED CASES 2024-705-0

Images

Comparison of the effectiveness of the MFM in \mbox{CO}_2 and \mbox{H}_2 production.

ADVANTAGES

- Enhanced CO2 capture capacity and stability
- Improved catalytic activity and stability
- Self-regeneration of Ni nanoparticles
- Mitigation of coke deposition

SUGGESTED USES

Capture and reformation of greenhouse gases, Carbon Dioxide and Methane - and the conversion to valuable syngas.

INVENTOR INFORMATION

Please read the recent press coverage on Prof. Abdul-Aziz's inventions

Please learn more about all of Prof. Abdul-Aziz's inventions at UCR

RELATED MATERIALS

Self-Regenerative Ni-Doped CaTiO3/CaO for Integrated CO2 Capture and Dry Reforming of Methane

University of California, Riverside Office of Technology Commercialization 200 University Office Building, Riverside,CA 92521 otc@ucr.edu https://research.ucr.edu/

Terms of use | Privacy Notice | © 2024 - 2025, The Regents of the University of California