

# Velocity-based Clinical Optoretinography System

Tech ID: 33588 / UC Case 2022-584-0

### **ABSTRACT**

Researchers at the University of California, Davis, have developed a new optoretinography) imaging and analysis system for diagnosing and monitoring retinal health and diseases.

### **FULL DESCRIPTION**

Over 2.2 billion people suffer from eye disease, leading to near or distant vision impairment. Unfortunately, in at least 1 billion of these cases, vision impairment could have been prevented or has yet to be addressed. In the US, eye disease leads to more than \$139 billion in economic burden. The most common eye conditions include age-related macular degeneration, glaucoma, diabetic retinopathy, and cataracts. Optical coherence tomography (OCT) is a noninvasive imaging modality used throughout medicine that generates images of biological tissues with high axial and transverse resolutions. While it is a standard for diagnosing eye conditions, it still suffers from limited resolution, large file size, high technical expertise, and expensive systems.

Researchers at the University of California, Davis, have developed a new optoretinography system using tissue velocity obtained from a modified OCT system. The system avoids the need to track specific cells over time, obviates the cost and labor of the position-based approaches such as adaptive optics, digital aberration correction and real time tracking. The system extracts OCT images within 40 milliseconds and produces optoretinograms, a measurement of neural function in the retina (e.g., photoreceptors). A prototype of the system has been developed, and responses have been acquired from three test subjects. Results indicate the system exhibits high test-retest repeatability and dependence on stimulus dose and retinal eccentricity.

### **APPLICATIONS**

▶ Diagnostic imaging of the eye for many eye conditions.

# FEATURES/BENEFITS

- ▶ A novel diagnostic system that provides OCT analysis of neural function within the eye.
- ▶ It is noninvasive, uses inexpensive components, and does not necessitate adaptive optics.
- ▶ Requires minimal training and resources.
- ▶ It may facilitate early diagnosis and treatment of various ocular diseases.

### **PATENT STATUS**

| Country                   | Туре                  | Number         | Dated      | Case     |
|---------------------------|-----------------------|----------------|------------|----------|
| United States Of America  | Published Application | 20250143566    | 05/08/2025 | 2022-584 |
| Patent Cooperation Treaty | Published Application | WO 2023/220235 | 11/16/2023 | 2022-584 |

### **CONTACT**

Raj Gururajan rgururajan@ucdavis.edu tel: 530-754-7637.



# **INVENTORS**

- ▶ Jonnal, Ravi
- ▶ Vienola, Kari
- ➤ Zawadzki, Robert J.

# OTHER INFORMATION

### **KEYWORDS**

ocular diseases,
glaucoma, ROP, OCT,
imaging, diagnostic,
optical coherence
tomography

### **CATEGORIZED AS**

- Medical
  - Diagnostics
  - ▶ Disease:

Ophthalmology and

# Optometry

- Imaging
- ▶ Other
- ▶ Research Tools

# ► Research Tools

Other

# **RELATED MATERIALS**

# ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Microscopy System

**University of California, Davis** 

**Technology Transfer Office** 

1 Shields Avenue, Mrak Hall 4th Floor,

Davis, CA 95616

Tel:

© 2024 - 2025, The Regents of the University of

530.754.8649

California

techtransfer@ucdavis.edu

Terms of use

https://research.ucdavis.edu/technology-

Privacy Notice

transfer/

Fax:

530.754.7620