Request Information Permalink

VIRUS-ENCODED DNA-BINDING PROTEINS

Tech ID: 33547 / UC Case 2024-126-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

Rapid virus evolution generates proteins essential to infectivity and replication but with unknown function due to extreme sequence divergence. Using a database of 67,715 newly predicted protein structures from 4,463 eukaryotic viral species, it was found that 62% of viral proteins are structurally distinct and lack homologs in the Alphafold database. Structural comparisons suggested putative functions for >25% of unannotated viral proteins.

UC Berkeley researcher have created new single stranded DNA (ssDNA) binding proteins and double stranded (dsDNA) binding proteins, and methods and compositions for using them, such as binding to target DNA.

SUGGESTED USES

» Gene editing

CONTACT

Terri Sale terri.sale@berkeley.edu tel: 510-643-4219.

INVENTORS

» Doudna, Jennifer A.

OTHER INFORMATION

CATEGORIZED AS

- » Biotechnology
 - » Genomics
 - >> Health
- » Medical
 - >> Gene Therapy
 - » Research Tools
 - >> Therapeutics
- » Research Tools
 - » Nucleic Acids/DNA/RNA

RELATED CASES

2024-126-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS
- ▶ Genome Editing via LNP-Based Delivery of Efficient and Stable CRISPR-Cas Editors
- ▶ Type III CRISPR-Cas System for Robust RNA Knockdown and Imaging in Eukaryotes
- ► Cas12-mediated DNA Detection Reporter Molecules
- ▶ Highly Multiplexed Tagging Methods for RNA Imaging and Other Applications
- ▶ Improved guide RNA and Protein Design for CasX-based Gene Editing Platform
- Cas13a/C2c2 A Dual Function Programmable RNA Endoribonuclease
- ▶ Miniature Type VI CRISPR-Cas Systems and Methods of Use
- ▶ RNA-directed Cleavage and Modification of DNA using CasY (CRISPR-CasY)
- CasX Nickase Designs, Tans Cleavage Designs & Structure

- ▶ In Vivo Gene Editing Of Tau Locus Via Liponanoparticle Delivery
- Methods and Compositions for Modifying a single stranded Target Nucleic Acid
- ▶ A Dual-RNA Guided CasZ Gene Editing Technology
- ▶ Single-Stranded Nucleic Acid Detection And Imaging System Using Cas9
- ▶ CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-VariPhi")
- ► A Protein Inhibitor Of Cas9
- ▶ RNA-directed Cleavage and Modification of DNA using CasX (CRISPR-CasX)
- ▶ Compositions and Methods for Genome Editing
- ► Split-Cas9 For Regulatable Genome Engineering
- Methods to Interfere with Prokaryotic and Phage Translation and Noncoding RNA
- ▶ Minimal RNA Targeting CRISPR Cas Systems
- ▶ Variant Cas12a Protein Compositions and Methods of Use
- ▶ CRISPR CASY COMPOSITIONS AND METHODS OF USE
- ▶ Single Conjugative Vector for Genome Editing by RNA-guided Transposition
- ▶ Improved Cas12a Proteins for Accurate and Efficient Genome Editing
- ▶ CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- ▶ Engineered/Variant Hyperactive CRISPR CasPhi Enzymes And Methods Of Use Thereof
- ▶ Methods Of Use Of Cas12L/CasLambda In Plants
- ▶ Type V CRISPR/CAS Effector Proteins for Cleaving ssDNA and Detecting Target DNA
- ▶ THERMOSTABLE RNA-GUIDED ENDONUCLEASES AND METHODS OF USE THEREOF (GeoCas9)
- ► Structure-Guided Methods Of Cas9-Mediated Genome Engineering
- ▶ Efficient Site-Specific Integration Of New Genetic Information Into Human Cells
- ▶ CRISPR-Cas Effector Polypeptides and Methods of Use Thereof
- ▶ Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE
- ▶ Compositions and Methods of Use for Variant Csy4 Endoribonucleases
- ▶ Methods and Compositions for Controlling Gene Expression by RNA Processing

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

 $ipira.berkeley.edu/\mid otl\mbox{-feedback@lists.berkeley.edu}$

© 2024, The Regents of the University of California

Terms of use | Privacy Notice