Request Information Permalink

PLASMONIC COFFEE-RING PATTERN DIAGNOSTIC DEVICES AND METHODS OF MAKING AND USING THEM

Tech ID: 33339 / UC Case 2024-043-0

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Published Application	WO2025160588	07/31/2025	2024-043

BRIEF DESCRIPTION

The reliable detection of trace amounts of analytes, such as disease biomarkers or environmental toxins, requires complex and often time-consuming laboratory techniques, limiting rapid point-of-care diagnostics. This innovation provides a simple, rapid, and highly sensitive diagnostic method, termed Plasmonic Coffee-Ring Pattern Diagnostic Devices, for detecting analytes of interest. The core technology, developed by researchers, involves a specialized nanoporous or mesoporous hydrophilic membrane that has been chemically treated to achieve an intermediate wettability (intermediate between hydrophilic and hydrophobic). A drop of sample is allowed to dry on this treated membrane, capturing any target analyte. A subsequent, overlapping drop of functionalized gold nanoshells is applied, which interacts with the immobilized analyte to form a distinct, visible plasmonic pattern (a "coffee-ring" effect) that signals the analyte's presence. This pattern-based method enables the detection of analytes at concentrations as low as 5 pg/mL, offering an order-of-magnitude increase in sensitivity compared to many alternative rapid diagnostic platforms. Furthermore, the reproducible pattern can be read and interpreted using machine learning-assisted embodiments to precisely quantify the analyte present in the sample.

SUGGESTED USES

- Rapid, ultra-sensitive diagnostic testing for infectious diseases (e.g., viral or bacterial pathogens) at the point-of-care.
- Early-stage detection and monitoring of trace biomarkers for chronic diseases (e.g., cancer, cardiac conditions) from body fluid samples.
- Environmental monitoring for trace contaminants, toxins, or pollutants in water or air samples.
- Food safety screening for allergens, pathogens, or adulterants at ultra-low levels.
- Drug monitoring and therapeutic drug management where minute concentrations must be measured.

CONTACT

Craig K. Kennedy craig.kennedy@berkeley.edu tel: .

INVENTORS

» Lin, Liwei

OTHER INFORMATION

CATEGORIZED AS

- » Materials & Chemicals
 - » Nanomaterials
- » Medical
 - » Diagnostics
- » Nanotechnology
 - » NanoBio
- » Sensors & Instrumentation
 - » Analytical
 - » Biosensors

RELATED CASES2024-043-0

- Ultra-High Sensitivity: Achieves detection limits as low as 5 pg/mL, offering a significant improvement over many current rapid diagnostic tests.
- Simplicity and Speed: The core assay relies on simple drop-drying and visual pattern formation, making it highly suitable for fast, inexpensive, point-of-care use.
- Versatile Platform: The core membrane and gold nanoshells can be functionalized to detect a wide array of target analytes, including proteins, antibodies, and nucleic acids.
- Quantification Potential: Integration with machine learning allows for the quantitative determination of analyte concentration, moving beyond simple qualitative results.
- Controlled Deposition: The treated membrane's intermediate wettability is key to creating a reproducible and clear "coffee-ring" pattern, enhancing reliability and readout clarity.

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ PMUT for Blood Pressure Monitoring
- ▶ Subcutaneous and Continuous Blood Pressure Monitoring by PMUTS
- ► Reconfigurable Soft Li-Ion Battery
- Fabrication of enhanced supercapacitors using atomic layer deposition of metal oxide on nanostructures
- ▶ Wafer Level Chip Scale Packaging Technology For Integrated Mems Devices

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

 $https://ipira.berkeley.edu/\mid otl\mbox{-feedback@lists.berkeley.edu}$

© 2025, The Regents of the University of California

Terms of use | Privacy Notice