

Request Information

Use Of Viral II-6 To Modulate Monocyte Differentiation To Boost Anti-Tumor Immunity

Tech ID: 33317 / UC Case 2022-582-0

ABSTRACT

Researchers at the University of California, Davis have developed a virally derived homolog to increase the inflammatory response desirable in cancer immunotherapy.

FULL DESCRIPTION

Researchers at the University of California Davis have developed the use of a virally derived homolog of interleukin-6 (vIL-6) to increase the inflammatory response desirable in cancer immunotherapy. The technology promotes dendritic cell differentiation and M1 macrophage differentiation from monocytes, unlike human IL-6, and doesn't trigger anti-inflammatory negative feedback mechanisms. The technology includes the RNA- and viral vector-based delivery of vIL-6-encoding nucleic acids.

Unlike IL-6, vIL-6 does not trigger negative feedback regulation, thus providing a unique benefit when it's used therapeutically as it does not limit its own efficacy by self-downregulation. This new technology aims to enhance cancer therapy by combining the administration of vIL-6 with an anti-cancer therapeutic agent, especially an anti-cancer immunotherapeutic agent.

APPLICATIONS

- ▶ Development of new medication and treatments for cancer
- ▶ Potential use in research and development in the medical and pharmaceutical industry
- ▶ Useful in the field of cancer therapeutics, specifically in immunotherapy
- ▶ Potential application in the manufacturing of cell culture mediums
- ▶ May be incorporated into various delivery systems such as viral vector-based delivery, liposomal formulations, transdermal patches, etc for treating cancer

FEATURES/BENEFITS

- ► Increases the inflammatory response desirable in cancer therapies
- ▶ Promotes dendritic cell differentiation and M1 macrophage differentiation
- ▶ Utilizes RNA- and viral vector-based delivery for effective implementation
- Does not self-downregulate which is an issue with existing therapies that are limited by negative feedback mechanisms
- ▶ Can be applied in various formats such as protein form or nucleic acid form
- ▶ Potential supplement for cell culture to enhance the recovery and efficacy of dendritic cells

PATENT STATUS

Country Type Number Dated Case

CONTACT

Prabakaran Soundararajan psoundararajan@ucdavis.edu tel: .

INVENTORS

- ► Izumiya, Yoshihiro
- ► Shimoda, Michiko

OTHER INFORMATION

CATEGORIZED AS

- Medical
 - ▶ Disease: Cancer
 - Gene Therapy
 - New Chemical
 - Entities, Drug Leads
 - ▶ Therapeutics
- **▶** Research Tools
 - Nucleic

Acids/DNA/RNA

Protein Synthesis

RELATED CASES

2022-582-0

Additional Patent Pending

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Transcription Active Complex Targeting Cancer Drug From Viral Protein Sequence
- ▶ CHD4 Targeting Peptide Isolated From Viral Protein For Cancer Therapeutics
- ► Cellular Protein CDH4 Inhibiting Peptide

University of California, Davis Technology Transfer Office

1 Shields Avenue, Mrak Hall 4th Floor,

Davis, CA 95616

Tel:

© 2023, The Regents of the University of California

530.754.8649

Terms of use

techtransfer@ucdavis.edu

Privacy Notice

https://research.ucdavis.edu/technology-

transfer/

Fax:

530.754.7620