OTC Website

Find Technologies

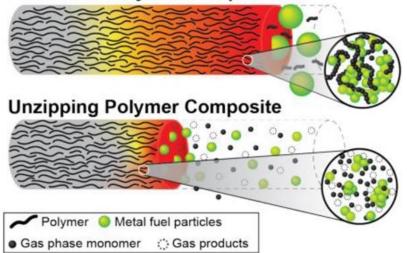
Permalink

Request Information

Unzipping Polymers For Enhanced Energy Release

Tech ID: 33256 / UC Case 2022-863-0

FULL DESCRIPTION


Background

Metal fuels such as aluminum (AI) have 3 times higher energy densities than the most powerful explosives - making AI particles the most commonly employed additive in energetic materials. Nanoscale metallic fuels have shown to be as much as 1000 times more reactive due to their high surface area to volume ratio. Unfortunately, due to significant sintering that occurs on a time scale often shorter than the combustion time, the initial nanoscale fuel is transformed into microscale particles. This increase in particle size slows down energy release rate and minimizes the advantages of employing nanoscale mtals. Strategies to mitigate this problem while showing considerable requires subsequent processing.

Technology

Prof. Zachariah and his team have developed a novel approach that utilizes a chain-unzipping polymer as a binder for energetic composites. The polymer (polypropylene carbonate - PPC) decomposes primarily through sequential monomer depolymerization. The strategy localizes the heat feedback to near the reaction front by driving the endothermic chemistry of unzipping. This then liberates the gas near the flame front and propels particles away from the burning surface to minimize agglomeration and sintering. The unzipping polymer decomposes into volatiles at a relatively low temperature which significantly reduces the sintering.

Traditional Polymer Composite

Conceptualization of unzipping versus traditional polymer binder.

CONTACT

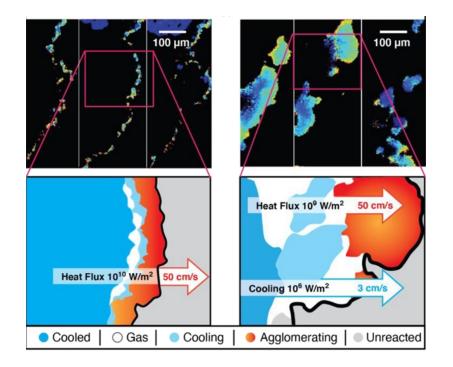
Venkata S. Krishnamurty venkata.krishnamurty@ucr.edu tel: .

OTHER INFORMATION

KEYWORDS

energetic materials, explosives,

propellants, nanothermites, thermites,


pyrotechnics, solid fuel, polymers

CATEGORIZED AS

- ► Energy
 - Other
- Materials & Chemicals
 - Composites
 - Nanomaterials

RELATED CASES

2022-863-0

Flame front temperature map and corresponding schematic of composites with PPC (on the left) and HPMC/PVDF (on the right).

ADVANTAGES

The developed composite samples demonstrate:

Significantly higher energy release rate - 15 times higher than conventional polymer binder mixture.

▶ Fast flame propagation speeds - 40 cms/seec compared to 3 cms/sec for the conventional mixture.

A much thinner and continuous flame front with smaller particles with 10 times higher heat flux which significantly enhances the

macroscopic flame propagating velocity to 50 cms/sec.

A 14 times increase in gas production which significantly reduces agglomeration/sintering which dramatically increases flame propagation and energy release rate.

SUGGESTED USES

Applications that use energetic materials such as propellants, solid fuels, thermites, etc.

RELATED MATERIALS

▶ Unzipping polymers significantly enhance energy flux of aluminized composites

INVENTOR INFORMATION

- Please see recent press coverage of Prof. Zachariah and his research at UCR.
- ▶ Please visit Prof. Zachariah's research group website to learn more about their research.
- Please review all inventions by Prof. Zachariah and his team at UCR.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20240002310	01/04/2024	2022-863

RELATED TECHNOLOGIES

One-Step Synthesis of Aligned Nanoparticles With High Purity

University of California, Riverside Office of Technology Commercialization 200 University Office Building, Riverside,CA 92521 otc@ucr.edu

Terms of use | Privacy Notice | © 2023 - 2024, The Regents of the University of California