

Technology & Industry Alliances

Available Technologies

chnologies Contact Us

Request Information

Double Emulsion Droplets as Osmotic Pressure Sensors in Soft Materials and in Living Biological Cells and Tissues

Tech ID: 33249 / UC Case 2023-868-0

BACKGROUND

Osmotic pressure significantly impacts cell behavior, tissue homeostasis, and even cancer progression, making it a crucial topic for many life science applications. Skincare, for example, relies strongly on the water content of the tissue, which is directly related to osmolarity. Osmotic pressure is also an important indicator of hemodynamic disorders, kidney disease, and the evolution of tumors. However, quantifying osmotic pressure in living cells and tissues is difficult and impossible inside 3D multicellular systems, such as living embryos, tissues, organs, and organoids, without considerably perturbing the system. Direct *in vivo* and *situ* osmotic pressure measurements would unlock critical data on fundamental cellular and developmental processes and help understand multiple disease processes.

DESCRIPTION

Researchers at the University of California, Santa Barbara, have developed a technology that non-invasively measures osmotic pressure *in situ* and *in vivo* within 3D living cells and tissues. The key to the invention is double emulsion droplets (generated using microfluidics) composed of an aqueous core with calibrated osmolarity surrounded by an oil layer. The oil layer acts as a semi-permeable membrane that enables the exclusive transport of water molecules. When the osmolarity between the aqueous core and the surrounding environment is different, water molecules exit or enter the core through the oil layer resulting in changes to the droplet volume, which provides a direct readout of osmotic pressure in the living system. The droplets are inserted using fine glass capillaries. The osmotic pressure in living cells and the extracellular spaces of living tissues.

ADVANTAGES

Non-invasive measurements of osmotic pressure in situ and in vivo within 3D living cells and tissues

Direct, spatially-localized and time-dependent measurement of osmotic pressure

APPLICATIONS

Biotech

- o Skincare
- o Diagnostics
- Pharmaceuticals

Permalink

CONTACT Donna M. Cyr

cyr@tia.ucsb.edu tel: .

INVENTORS

Campas, OtgerVIAN, Antoine

OTHER INFORMATION

KEYWORDS In situ quantification, Osmotic pressure, Living embryonic tissues, Double emulsion droplet sensors, 3D multicellular systems, Blastomeres

CATEGORIZED AS

- Biotechnology
 - Health
- Materials & Chemicals
 - Biological
- Medical
 - Diagnostics
 - Disease: Dermatology

RELATED CASES 2023-868-0

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Reference for National Filings	WO 2024/107547	05/23/2024	2023-868

Patent Pending

RELATED MATERIALS

▶ Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ

development - 04/03/2024

▶ In situ quantification of osmotic pressure within living embryonic tissues - 12/06/2022

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

Ferrofluid Droplets to Locally Measure the Mechanics of Soft Materials

University of California, Santa BarbaraImage: Constraint of California, Santa BarbaraOffice of Technology & Industry AlliancesImage: Constraint of California, Santa Barbara, CA 93106-2055 342 Lagoon Road, ,Santa Barbara, CA 93106-2055 Image: Constraint of California, Santa Barbara, CA 93106-2055 https://www.tia.ucsb.eduImage: Constraint of California, Santa Barbara, CA 93106-2055 Tel: 805-893-2073 Fax: 805.893.5236 padilla@tia.ucsb.eduImage: Constraint of California, Santa Barbara, CA 93106-2055	3 - 2024, The Regents of the University of California Terms of use Privacy Notice
--	---