INNOVATION VENTURES **AVAILABLE TECHNOLOGIES** **CONTACT US** Request Information Permalink ## New Generation Bitopic Bcr-Abl Inhibitors Tech ID: 33208 / UC Case 2022-024-0 #### INVENTION NOVELTY Scientists at UCSF have developed a novel class of BCR-ABL inhibitors that engages two binding sites in BCR-ABL simultaneously. This two-site binding (bitopic) mechanism of action is unprecedented against BCR-ABL, one of the most well-validated targets in oncology. #### **VALUE PROPOSITION** Classically, inhibitors bind to their targets through singular, well-formed pockets. In the case of chronic myeloid leukemia (CML), a disease characterized by its nearly absolute association with BCR-ABL dependency, the approved drugs directed against BCR-ABL only target a single binding site and cause a mixture of off-target toxicity issues. In addition to the off-target effects, commonly observed resistance mutations preclude the recognition of any single 'optimal' therapeutic regiment for CML that is able to universally enable patients to live normal lifespans or achieve a cure. This novel invention provides the following advantages: - ▶ Increased potency (especially against resistance mutations such as the T315I mutant in CML) - ► Higher target specificity due to avidity (active site AND allosteric site recognition needed for binding) - ► Potentially reduced cardio-toxicity - Deeper target inhibition at BCR-ABL, potentially increasing the proportion of responsove patients #### **TECHNOLOGY DESCRIPTION** UCSF researchers have synthesized two classes bitopic inhibitors of BCR-ABL that have been verified for their biochemical activity against ABL1 kinase domain and validated for their ability to specifically inhibit BCR-ABL signaling in cells. Further optimization can be done in both the ligand and linker components and additional biological validation will be needed prior to clinical trial. #### LOOKING FOR PARTNERS To develop and commercialize this technology. #### STAGE OF DEVELOPMENT ## CONTACT #### Catherine Smith Catherine.Smith2@ucsf.edu tel: 510-646-0631. # OTHER INFORMATION #### **CATEGORIZED AS** Biotechnology Health **RELATED CASES** 2022-024-0 ### **RELATED MATERIALS** ▶ IFITM proteins assist cellular uptake of diverse linked chemotypes #### **DATA AVAILABILITY** Available upon request #### PATENT STATUS Patent Pending ADDRESS UCSF Innovation Ventures 600 16th St, Genentech Hall, S-272, San Francisco,CA 94158 Fax: CONNECT Follow in Connect Follow in Connect Connect Follow in Connect Connect Follow in Connect Follow in Connect Connect Follow in Connect Connect Follow in