Request Information Permalink

CLOUD-BASED CARDIOVASCULAR WIRELESS MONITORING DEVICE

Tech ID: 33096 / UC Case 2023-107-0

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Published Application	WO 2024-215937	10/17/2024	2023-107

Additional Patent Pending

BRIEF DESCRIPTION

This invention is designed to monitor and analyze cardiovascular health data in real-time. The system comprises a user device equipped with cardiac sensors to detect and record cardiovascular data from a patient. This data, along with the patient's demographic information, is transmitted to a cloud-based platform where it is analyzed by a machine learning model. The model classifies the cardiovascular data and sends the classification results to healthcare workers for further action. This innovative system represents a significant advancement in the field of cardiovascular health monitoring, leveraging modern technology to enhance patient care and streamline healthcare processes.

SUGGESTED USES

- Remote Patient Monitoring: Enables continuous monitoring of patients' cardiovascular health from their homes, reducing the need for frequent hospital visits.
- Early Detection of Cardiovascular Diseases: Facilitates early diagnosis by analyzing data trends and identifying potential cardiovascular issues before they become critical.
- Personalized Healthcare: Provides tailored health insights based on individual demographic information and cardiovascular data, enhancing personalized treatment plans.
- Telemedicine Integration: Supports telemedicine services by providing healthcare professionals with accurate and timely cardiovascular data for remote consultations.

ADVANTAGES

- Real-Time Data Analysis: The system offers immediate analysis of cardiovascular data, allowing for prompt medical intervention when necessary.
- Enhanced Accuracy: Utilizes advanced machine learning algorithms to improve the accuracy of cardiovascular disease classification.
- Convenience: Patients can be monitored from the comfort of their homes, reducing the burden of travel and hospital visits.

CONTACT

Laleh Shayesteh lalehs@berkeley.edu tel: 510-642-4537.

INVENTORS

» KaazemPur-Mofrad,

Mohammad Reza

OTHER INFORMATION

CATEGORIZED AS

- » Biotechnology
 - >> Health
 - » Other
- » Computer
 - » Software
- » Medical
 - » Devices
 - » Diagnostics
 - » Disease: Cardiovascular
 - and Circulatory System
 - » Other
 - » Research Tools
 - » Screening
 - » Software
- » Sensors & Instrumentation
 - » Biosensors

RELATED CASES2023-107-0

•	Scalability: The cloud-based platform can handle large volumes of data, making it suitable fo
	widespread deployment across healthcare facilities.

•	Improved Patient Outcomes: Early detection and continuous monitoring contribute to better
	management of cardiovascular conditions, potentially improving patient outcomes.

RELATED MATERIALS			

University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2024 - 2025, The Regents of the University of California

Terms of use | Privacy Notice