SANTA CRUZ OFFICE OF RESEARCH

Industry Alliances & Technology Commercialization

Available Technologies

Contact Us

Permalink

Request Information

Systems And Methods For The Preparation Of Peptide Receptive Mhc-I/Chaperone Complexes With Native Glycan Modifications

Tech ID: 33059 / UC Case 2020-251-0

BACKGROUND

Typically, peptide receptive MHC-I multimer reagents are prepared in bacterial (*E. coli*) culture. While this is efficient, it does not result in glycosylation of the MHC-I peptide fragments as is done in mammalian cells. As a result, if such reagents are produced in mammalian cells, proper glycosylation would result and the reagents would have a potentially more accurate representation of the natural T-cell target.

TECHNOLOGY DESCRIPTION

This technology involves the coexpression of leucine zipper tagged single chain class I MHC molecules and the TAPBPR chaperone in mammalian cells to produce glycosylated MHC-I that are ready to accept an antigenic peptide of interest.

The expressed MHC-I can be purified from the supernatant, the leucine zippers removed through use of a specific protease (with a site engineered into the construct), multimerized, and contacted with the peptide of interest. In contrast with other technologies in this portfolio (e.g. 2018-408), no placeholder peptide is needed to create the peptide receptive MHC-I.

An external file that holds a picture, illustration, etc. Object name is gzaa015f1.jpg

APPLICATIONS

Peptide-receptive (empty) MHC-I reagents

MHC-I Multimer reagents

- T Cell receptor discovery
- T Cell epitope identification

CONTACT Jeff M. Jackson jjackso6@ucsc.edu tel: .

OTHER INFORMATION

KEYWORDS MHC-I, Glycosylated MHC-I, MHC-I multimer, Empty MHC-I, Peptide receptive MHC-I, Mammalian MHC-I, MHC-I tetramer, MHC-I reagent, TAPBPR, chaperone, MHC, Major Histocompatability Complex

CATEGORIZED AS

Materials & Chemicals

- Biological
- Research Tools
 - Reagents

RELATED CASES 2020-251-0, 2018-408-0

ADVANTAGES

Glycosylated MHC-I are more realistic

Efficient production of soluble MHC-I reagents from mammalian cells

MHC-I can be purified from supernatants

No need for placeholder peptide

INTELLECTUAL PROPERTY INFORMATION

Country	Туре	Number	Dated	Case
European Patent Office	Published Application	402841.2	07/20/2022	2020-251
United States Of America	Published Application	20210155670	05/27/2021	2020-251
European Patent Office	Published Application	3817757	05/12/2021	2018-408

Additional Patents Pending

RELATED MATERIALS

▶ Production of soluble pMHC-I molecules in mammalian cells using the molecular chaperone TAPBPR - 12/31/2019

RELATED TECHNOLOGIES

Systems And Methods For Generating Class 1 Major Histocompatibility Complex Multimer Screening Reagents Using Chaperone Mediated Peptide Exchange

University of California, Santa Cruz Industry Alliances & Technology Commercialization Kerr 413 / IATC, Santa Cruz,CA 95064 Tel: 831.459.5415

innovation@ucsc.edu https://officeofresearch.ucsc.edu/ Fax: 831.459.1658 © 2023, The Regents of the University of California Terms of use Privacy Notice