SANTA CRUZ OFFICE OF RESEARCH

Industry Alliances & Technology Commercialization

Available Technologies

Contact Us

Permalink

Request Information

Compositions and Methods for Increasing Plant Yield

Tech ID: 33029 / UC Case 2017-689-0

BACKGROUND

Nitrogen-fixing bacteria can transform atmospheric nitrogen into fixed nitrogen, compounds which are usable by plants. For example, *Rhizobium* is a symbiotic nitrogen-fixing bacteria that invade the root hairs of host plants where they multiply and stimulate the formation of root nodules. Within these nodules, nitrogen-fixing bacteria convert free nitrogen into compounds such as ammonia, which the host plant uses for its development.

Legume plants such as peas and soybeans can be infected by nitrogen-fixing bacteria for such benefits. Legume crops are extremely valuable in the United States and around the world. A modest increase in crop yield could increase profits by billions of dollars. Thus, there is an interest and need to improve methods of cultivating crops and increase crop yield. A UC Santa Cruz researcher, in collaboration with The Carnegie Institution for Science, has developed improved approaches for infecting legume plants with nitrogen-fixing bacteria.

TECHNOLOGY DESCRIPTION

The approaches involve treating nitrogen-fixing bacteria populations with light before infecting legume plants with them. This improves the bacteria population's capacity to infect legume plants. The legume plants are then inoculated with the light-activated bacteria, potentially via an irrigation system. Some approaches involve delivering the light-activated population after the legume plant has already developed a root with a functional root hair.

These approaches improve legume plant yield in several ways, such as by improving seed yield.

CONTACT

Jeff M. Jackson jjackso6@ucsc.edu tel: .

INVENTORS

Bogomolni, Roberto

OTHER INFORMATION

KEYWORDS legume, nitrogen fixation, rhizobium, inoculation, photoreceptor, LOV domain, BLUF domain, PYP domain, rhodopsin, PAS domain, leghemoglobin, LED light, blue light, drip irrigation, fertilization, bacteria, nodule, light-activation, crop, agriculture

CATEGORIZED AS

Agriculture & Animal
Science
Other
Materials & Chemicals
Agricultural

RELATED CASES 2017-689-0

Stem Height Difference of Fava Bean Plants after *Rhizobium* Inoculations.

APPLICATIONS

- ▶ legume agriculture
- ▶ optogenetics
- ▶ nitrogen fixation

ADVANTAGES

- ▶ improves crop yield
- ▶ improves fertilization
- ▶ increases nodule formation
- ▶ increases seed yield
- ▶ increases stem height
- ▶ increases bean yield
- ▶ increases chlorophyll production
- ▶ readily adaptable

University of California, Santa Cruz Industry Alliances & Technology Commercialization Kerr 413 / IATC, Santa Cruz,CA 95064 Tel: 831.459.5415

innovation@ucsc.edu https://officeofresearch.ucsc.edu/ Fax: 831.459.1658 © 2023, The Regents of the University of California Terms of use Privacy Notice