Request Information Permalink

SPECTRAL FLUCTUATION RAMAN SPECTROSCOPY (SFRS)

Tech ID: 32999 / UC Case 2023-058-0

PATENT STATUS

Country	Туре	Number	Dated	Case
European Patent Office	Published Application	WO 2025/058659	03/20/2025	2023-058

Additional Patent Pending

BRIEF DESCRIPTION

Our ability to experimentally measure the biomacromolecular structure of proteins and their complexes down to the atomic scale has progressed at a staggering pace in recent years. However, the dynamical conformational changes that affect, to name a few examples, DNA transcription, energy-transfer in photosynthesis and enzyme activity, and the transition from healthy to diseased states, remain difficult to capture. A non-perturbative, label-free approach that is sensitive to individual conformational states is single-protein Raman spectroscopy. However, the time resolution of single-protein Raman spectroscopy is typically limited to milliseconds (10⁻³ sec), limited by inherent signal strength. Protein conformational dynamics occur over a timescale ranging from tens of seconds down to microseconds (10⁻⁶ sec) or even nanoseconds (10⁻⁹ sec).

To address these challenges UC Berkeley researchers have developed a novel, high-temporal dynamic range Raman spectrometer capable of measuring sub-microsecond, and even nanosecond, fluctuations in single- and few-molecule spectra. The available dynamic range can be used to study and control of biomolecular dynamics as related to protein-protein interactions, drug discovery, validating computational biophysics capabilities, and many other additional applications.

SUGGESTED USES

- » Multi-timescale, single-molecule Raman spectroscopy
- » Sub-microsecond resolution, down to picosecond scale
- » Label-free characterization of protein conformational states

ADVANTAGES

- » Experimental measurement of protein dynamics and protein-protein interactions
- » Drug discovery
- » Advancing computational biophysics
- » Materials science, surface science, analytical chemistry, catalysis, and biomedical diagnostics

RELATED MATERIALS

CONTACT

Sabrina N. David sabrina.david@berkeley.edu tel:

INVENTORS

» Utzat, Hendrik

OTHER INFORMATION

KEYWORDS

Protein structure, Protein folding, DNA sequencing, Raman spectroscopy,
Biomoleculat dynamics, Spectroscopy

CATEGORIZED AS

- » Optics and Photonics
 - » All Optics and Photonics

» Biotechnology

- » Bioinformatics
- » Genomics
- » Health
- » Proteomics

» Imaging

- » Medical
- » Molecular

» Medical

- » Diagnostics
- >> Imaging
- » Research Tools

» Nanotechnology

» NanoBio

- » Research Tools
 - » Bioinformatics
 - » Nucleic Acids/DNA/RNA

RELATED CASES

2023-058-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Improved Surface Enhanced Raman Spectroscopic (SERS) Method Operating in the Shortwave Infrared

University of California, Berkeley Office of Technology Licensing 2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566 https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

 $\ @$ 2023 - 2025, The Regents of the University of California

Terms of use | Privacy Notice