Request Information Permalink

TRIACETIC ACID LACTONE PRODUCTION BY THIOLASE BKTB FROM BURKHOLDERIA

Tech ID: 32953 / UC Case 2023-032-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

BACKGROUND:

Triacetic acid lactone (TAL) is an important building block for a diverse set of chemicals and plastic polymers. Native pathways using microbes can serve as an environmentally-friendly and renewable source of TAL production. However, microbial production of TAL is limited to a few platform microbes. Further, native pathways using platform microbes such as *E. coli* show toxicity to TAL, which reduces its production. Therefore, there is a need for thiolases that provide higher yield and can be used in additional microorganisms.

TECHNOLOGY OVERVIEW:

Researchers at the Joint BioEnergy Institute (JBEI) have discovered novel thiolases for production of Triacetic acid lactone (TAL) via platform microorganisms. The discovered thiolases achieved production of 2.77 g/L of TAL when expressed in *E. coli*, which is the highest titer production reported using *E. coli*.

The discovered thiolases were identified from homologs of *Cupriavidus necator*, and their TAL production was verified by *in vitro* and *in vivo* testing. Unlike the energetically expensive native TAL-producing enzyme 2-pyrone synthase, the discovered thiolases utilize acetyl-CoA instead of malonyl-CoA as an extension unit.

The *Burkholderia* thiolases identified by the researchers can be engineered to further boost production of TAL in existing platform microorganisms such as *E. coli*, as well as other microorganisms such as yeasts.

DEVELOPMENT STAGE:

Validated system

SUGGESTED USES

- » Production of triacetic acid lactone (TAL), a precursor for commodity chemicals, using carbon feedstocks in industrial fields
- » TAL is a precursor for many pharmaceutical drugs and an alternative to petroleum for production of plastic polymers

ADVANTAGES

Superior titer, rate, and yield, and titer production of TAL than current thiolases and enzymes

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

Expression Of Heme Biosynthesis And Heme Proteins In Edible Filamentous Fungi

CONTACT

Laleh Shayesteh lalehs@berkeley.edu tel: 510-642-4537.

INVENTORS

» Keasling, Jay D.

OTHER INFORMATION

CATEGORIZED AS

- » Materials & Chemicals
 - » Biological
 - >> Chemicals
 - » Polymers
- » Medical
 - >> Therapeutics
- » Veterinary
 - >> Therapeutics

RELATED CASES

2023-032-0

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2024, The Regents of the University of California

Terms of use | Privacy Notice