Berkeley IPIRA

Request Information

APODIZATION SPECIFIC PEAK FITTING IN CHARGE DETECTION MASS SPECTROMETRY

Tech ID: 32867 / UC Case 2022-148-0

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Reference for National Filings	2024/039633	02/22/2024	2022-148
Patent Pending				
BRIEF DESCRIPTION				
Short-time Fourier transforms with short segment lengths are typically used to analyze single ion charge detection mass spectrometry (CDMS) data either to				
overcome effects of frequency shifts that may occur during the trapping period or to more precisely determine the time at which an ion changes mass, charge				
or enters an unstable orbit. The short segment lengths can lead to scalloping loss unless a large number of zero-fills are used, making computational time a				
significant factor in real time analysis of data.				

To address the foregoing deficiencies in prior approaches, UC Berkeley researchers have developed an apodization specific fitting that can lead to a 9-fold reduction in computation time compared to zero-filling to a similar extent of accuracy. This makes possible real-time data analysis using a standard desktop computer and capable of separating ions with similar frequencies.

SUGGESTED USES

» analyze single ion charge detection mass spectrometry (CDMS)

ADVANTAGES

- » improved resolution, charge measurement and data analysis speed
- » >20% increase in S/N
- » eliminates computational barriers by enabling real time processing of CDMS data on a laptop computer

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Full Signal Utilization In Charge Detection Mass Spectrometry
- High Performance Charge Detection Mass Spectrometry Without Ultra-High Vacuum
- Multiplex Charge Detection Mass Spectrometry
- Sequential Pass Express Charge Detection Mass Analyzer
- Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe
- Aerosol Ionization For Charge Detection Mass Spectrometry Ion Mobility Analysis

CONTACT

Terri Sale terri.sale@berkeley.edu tel: 510-643-4219.

Permalink

INVENTORS

» Williams, Evan R.

OTHER INFORMATION

CATEGORIZED AS

» Medical

- » Research Tools
- » Sensors & Instrumentation
 - » Analytical
 - » Physical Measurement
 - » Scientific/Research

RELATED CASES

2022-148-0

University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704
Tel: 510.643.7201 | Fax: 510.642.4566
https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu
© 2022, The Regents of the University of California
Terms of use | Privacy Notice