OTC Website

Request Information

Silicon And Carbon Nanocomposite Spheres With Enhanced Electrochemical Performance For Full Cell Lithium Ion Batteries

Find Technologies

Tech ID: 32709 / UC Case 2017-495-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	11,349,120	05/31/2022	2017-495
FULL DESCRIPTION				
Background				
Silicon has proven to be a promising a	node material for lithium-ion bat	teries (LIBs) due to its h	igh theoretical capacity	of 3572 mAh/g. However
silicon anodes suffer huge volume exp	pansions during the lithiation proc	cess which induces une	ven stress-strain distribu	ution causing
pulverization and loss of active materia	al. Several academic and indust	rial efforts have been ma	ade on the synthesis of	nano silicon, novel binde
systems and novel nanostructured sili	con anode materials. These met	hods require very exper	nsive raw materials, high	n processing cost and
result in high surface area which limit	the application in full cell LIBs. T	he large surface area re	sults in a larger solid ele	ectrolyte interface which

Invention

in turn causes high, irreversible capacity loss.

Researchers led by Prof. Cengiz Ozkan at UCR have developed a patented, innovative and facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNS) via a surface-protected magnesiothermic reduction process with subsequent chemical vapor deposition. The team has prototyped both a 2032 type half coin cell with an MSNS anode as well as a full cell LIB with an LCO cathode and an MSNS anode with excellent high reversible capacity, cycling stability and rate performance.

Cycling response of the MSNS/LCO full cell at C/2 rate

Contact Us

Permalink

CONTACT

Venkata S. Krishnamurty venkata.krishnamurty@ucr.edu tel: .

OTHER INFORMATION

KEYWORDS

Lithium-ion batteries, Nanocomposite,

Silicon anode, Energy storage,

Electric vehicles, Drone batteries,

Silicon-Carbon composite, Consumer

Electronics Battery

CATEGORIZED AS

Energy

Storage/Battery

Materials & Chemicals

Nanomaterials

Nanotechnology

Materials

► Transportation

► Aerospace

► Alternative Propulsion

Automotive

RELATED CASES

2017-495-0

Galvanostatic voltage profile of the MSNS/LCO full cell at C/2 rate

STATE OF DEVELOPMENT

The team has prototyped 2032 type coin half cells with the MSNS as anode material and pure Lithium metal chip as cathode which demonstrated a high reversible capacity of 3207 mAh/g with enhanced cycling stability and rate performance. A full cell LIB was built with MSNS as anode and Lithium Cobalt cathode (LCO). The full cell displayed high volumetric energy density of 850 WH/L and excellent cycling stability.

ADVANTAGES

The benefits and significance of their innovation are:

- Simple and scalable
- > Provides for homogeneous stress-strain distribution during lithiation and de-lithiation
- Demonstrated high initial coulombic efficiency of 71.3%
- > High reversible capacity, superior rate performance and enhanced cycling stability
- > Potential to improve capabilities with optimization of the electrode structure and cell balancing.

SUGGESTED USES

Lithium-ion batteries - specifically anode material, in rechargeable energy storage applications such as:

- Electric vehicles
- Stationary storage
- Consumer electronics
- Drone batteries where battery weight is of importance

OTHER INVENTIONS BY PROF. CENGIZ OZKAN

Please see other inventions by Prof. Cengiz Ozkan

RELATED MATERIALS

Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries

University of California, Riverside Office of Technology Commercialization 200 University Office Building, Riverside,CA 92521 otc@ucr.edu https://research.ucr.edu/