OTC Website

Request Information

Free-Standing Ni-Nio Nanofiber Cloth Anode For High Capacity And High Rate Li-Ion Batteries

Tech ID: 32655 / UC Case 2016-183-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	11,211,598	12/28/2021	2016-183
FULL DESCRIPTION				
Background				
To meet market demand for cost effectiv	e, safe and high-performance	Lithium-Ion batteries (LI	B), researchers continu	e to pursue novel
materials with varied nanostructures. LIE	3 electrodes often consist of co	onductive additives, bind	er, current collector and	active material. A free
standing electrode incorporates the curr	ent collector into the electrode	architecture thereby elir	minating the need for bi	nders or conductive
additives. Replacements for graphitic an	ode include metals such as Si	licon, Tin, other transitio	nal metals and Lithium	metal. Silicon, Tin and
other transition metal oxides suffer from	large volume expansions durir	ng charge/discharge cau	ising degradation of the	electrode. Nickel Oxide

(NIO) is a promising candidate for anode but endures similar volume expansion limiting its potential.

Current Invention

Research team led by Profs. Cengiz and Mihrimah Ozkan, at UCR, have developed a patented and proven, Ni-NIO nanofiber cloth electrode that is synthesized by electrospinning and processed by simple heat treatments which addresses the challenges described above.

Deep Galvanostatic cycling data at 3C for more than 1000 cycles.

Contact Us

Permalink

CONTACT

Venkata S. Krishnamurty venkata.krishnamurty@ucr.edu tel: .

OTHER INFORMATION

KEYWORDS Ni-Nickel Oxide Anode, Nickel Oxide Nanofiber, Lithium-ion battery, Electrospinning, Rechargeable battery, Energy storage, Lithium Battery Anode

CATEGORIZED AS

- Energy
 - Storage/Battery
- Materials & Chemicals
 - Nanomaterials
- Nanotechnology
 Materials
 - Matoria
- TransportationAutomotive

RELATED CASES 2016-183-0

Find Technologies

Scanning electron microscopy image of Ni-NIO fiber after 400 cycles at 3C.

ADVANTAGES

The benefits of their innovation and discovery are:

- ▶ High capacity and long cycle life.
- ▶ Fast cycling rates of 3C very valuable and desired for fast charging of electric vehicles.
- Minimal changes in morphology post cycling after 1,500 cycles at 3C rates.
- Low temperature processing results in smaller grain sizes which facilitates the formation of a polymer gel-like material which supports
- longer cycle life and minimal morphology changes.
- > The electrodes' Nickel backbone prevents damage caused by mechanical stress due to volume changes.

STATE OF DEVELOPMENT

Lab level prototype built and tested.

The team fabricated 2032 type coin cells to test the performance of the Ni-NIO anodes. The results are impressive with a high capacity of 1108

mAh/gram after 1,500 cycles at a fast cycling rate of 3C and coulombic efficiency greater than 99%.

SUGGESTED USES

- Lithium-ion battery anode
- Rechargeable energy storage

RELATED MATERIALS

Free-standing Ni-NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries

University of California, Riverside Office of Technology Commercialization 200 University Office Building, Riverside,CA 92521 otc@ucr.edu https://research.ucr.edu/

Terms of use | Privacy Notice | © 2021 - 2022, The Regents of the University of California