OTC Website

Find Technologies

Contact Us

Permalink

Request Information

Direct Assembly Of Hydrophobic Nanoparticles Into Multifunctional Structures

Tech ID: 32613 / UC Case 2011-450-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	9,393,539	07/19/2016	2011-450
FULL DESCRIPTION				
Background				
Multifunctional particles in the microme	eter or sub-micrometer scale that	exhibit two or more dif	erent properties are hig	ghly desirable for many
echnological applications ranging fron	n catalysis and energy to multimo	dal imaging, detection	and simultaneous diagi	nosis and therapy. By
organizing different types of nanopartic	cles together, it not only allows the	e utilization of the size	and shape dependent p	properties of individual
nanoparticles but also takes advantag	e of the new properties resulting f	rom the interactions be	tween neighbours.	
Conventional methods for assembly a	e limited by challenges such as:			
The resulting nanostructures ret	ain their hydrophobic character a	nd are not water solubl	e and therefore require	additional steps to
ensure water dispersability.				
Ligand exchange processes eith	er cause a decrease in efficienci	es, or lead to aggregati	on and precipitation of	the nanoparticles or
require additional surface treatmen	t steps.			

Current Invention

At UCR, inventors have developed a general and powerful self-assembly method for the fabrication of multifunctional composite

nanostructures. The simple assembly process allows great flexibility in incorporating multiple nanoparticle components and on hosts with more

complex morphologies.

CONTACT

Venkata S. Krishnamurty venkata.krishnamurty@ucr.edu tel: .

OTHER INFORMATION

KEYWORDS

Self Assembly, Hydrophobic

Nanoparticles, Multifunctional

Materials, Mercapto-Silica, Multilayer

Structures, Magnetic Resonance

Imaging (MRI), MRI, Biological

Targeting, Quantum Dots

CATEGORIZED AS

Optics and Photonics

- All Optics and Photonics
- Energy
- Solar
- Imaging
 - Medical

Other

- Materials & Chemicals
 - Composites
 - Nanomaterials

► Medical

- Diagnostics
- Imaging
- Research Tools

► Nanotechnology

- Materials
- ▶ NanoBio
- ► Tools and Devices

RELATED CASES

2011-450-0

Picture shows (a) the schematic illustration for the approach for transferring nanoparticle capped (3-mercaptopropyl) trimethoxysilane (MPS) spheres from oil to water by forming bi-layer structure and subsequent silica coating; (b) TEM images of low and high magnification of silica coated y-Fe2O3 nanoparticle-capped MPS spheres synthesized in the presence of sodium dodecyl sulfate. The y-Fe2O3 nanoparticles were originally protected by oleic acid; (c) TEM images of MPS spheres capped with various nanoparticles and then surface coated with silica in the presence of SDS surfactant (1) MPS@Au@SiO2, (2) MPS@TiO2 nanorods @SiO2 and (3) MPS@ZrO2@SiO2. The Au (gold) particles were originally protected by dodecylamine (C12N), TiO2 (titanium dioxide) nanorods by oleic acid and ZrO2 (Zirconium dioxide) nanodots by (trioctylphosphine oxide (TOPO)

Picture above shows a confocal optical microscopy image of 3.5m m spheres loaded with quantum dots of two different types.

ADVANTAGES

- Highly versatile and configurable
- Scalable and reproducible.
- Allows for the preparation of various multifunctional and multilayer structures.
- > Process can be easily extended to the assembly of hydrophilic nanoparticles with minimal modifications.

SUGGESTED USES

- Catalysis
- Energy harvesting and transformation
- Multimodal imaging

Detection and simultaneous diagnosis and therapy

RELATED MATERIALS

Direct Assembly of Hydrophobic Nanoparticles to Multifunctional Structures

INVENTIONS BY PROF. YADONG YIN

Please see all inventions by Prof. Yadong Yin and his team at UCR

University of California, RiversideOffice of Technology Commercialization200 University Office Building,Riverside,CA 92521otc@ucr.eduhttps://research.ucr.edu/

Terms of use | Privacy Notice | © 2021 - 2022, The Regents of the University of California