

Technology & Industry Alliances Available Technologies Contact Us

Request Information Permalink

# **Magneto-Optic Modulator**

Tech ID: 32583 / UC Case 2020-701-0

# **BACKGROUND**

Modulation, the key to any communication system, is the adjustment of the frequency, phase, or amplitude of a carrier wave to transfer information. In a typical optical communication system, the modulation is performed through the electro-optic effect where the phase or the amplitude of light is modulated using a radio frequency (RF) signal. Integrated electro-optics exist, but they are limited by the complex integration of the material on a silicon photonics platform (e.g., lithium niobate). Material degradation, low modulation bandwidth, and the large absorption in the materials also limit the maximum modulation frequency.

## **DESCRIPTION**

Researchers at University of California, Santa Barbara have developed a novel integrated optical modulator based on the nonreciprocal phase shift in magneto-optic material. This invention can be efficiently integrated on any integrated optical waveguide including silicon waveguides (e.g., bonding). Unlike semiconductors at RF, magneto-optic materials do not suffer from plasma free carrier absorption, and perform reliably over time. Compared to standard magneto-optic modulators, this invention does not require polarization filters, removing a difficult fabrication step in integrated optics. This technology can be effectively used as a low-loss electro-optic transducer and for sensing. The integration, the broader modulation bandwidth, and the low RF propagation loss can be beneficial to achieve lower power consumption compared to standard electro-optic modulators.

# **ADVANTAGES**

- ► Low-cost and large-scale efficient integration compared to other technologies
- Easy packaging due to the novel design of the electric driving circuit
- ► Minimal power and material consumption
- No polarization filters required

# **APPLICATIONS**

- ► Sensors & Instrumentation
- Optics and Photonics
- Communications
  - -Optical
  - -Networking
- Semiconductors

## **PATENT STATUS**

| Country                   | Туре                  | Number      | Dated      | Case     |
|---------------------------|-----------------------|-------------|------------|----------|
| United States Of America  | Published Application | 20240329439 | 10/03/2024 | 2020-701 |
| Patent Cooperation Treaty | Published Application | 2023/004112 | 01/26/2023 | 2020-701 |

### CONTACT

Pasquale S. Ferrari ferrari@tia.ucsb.edu tel: .

#### **INVENTORS**

- Bowers, John E.
- ▶ Pintus, Paolo

### OTHER INFORMATION

#### **KEYWORDS**

optic, modulator, modulation, network, waveguide, RF, bandwith, data, supercomputing, quantum, sensing

# **CATEGORIZED AS**

- **▶** Communications
  - ▶ Internet
  - Networking
  - Optical
  - ▶ Other
  - Wireless

## Optics and Photonics

► All Optics and

**Photonics** 

# **▶** Semiconductors

- ▶ Other
- Processing and

**Production** 

# Sensors &

# Instrumentation

- Analytical
- ▶ Other

**RELATED CASES** 

2020-701-0

## **RELATED MATERIALS**

► An integrated magneto-optic modulator for cryogenic applications - 08/05/2020

# ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Bonding of Heterogeneous Material for Improved Yield and Performance of Photonic Integrated Circuits
- ▶ Epitaxial Laser Integration on Silicon Based Substrates
- ► Integrated Reconfigurable Circulator
- ▶ Quantum Dot Photonic Integrated Circuits
- ► Integrated Dielectric Waveguide and Semiconductor Layer
- ► Orthogonal Mode Laser Gyro
- ► Monolithically Integrated Laser-Nonlinear Photonic Devices
- ► Misfit Dislocation Free Quantum Dot Lasers

University of California, Santa Barbara
Office of Technology & Industry Alliances
342 Lagoon Road, ,Santa Barbara,CA 93106-2055 |
https://www.tia.ucsb.edu
Tel: 805-893-2073 | Fax: 805.893.5236 | padilla@tia.ucsb.edu





© 2021 - 2024, The Regents of the University of California Terms of use Privacy Notice