### **UCI** Beall Applied Innovation

Research Translation Group

**Research Translation Group** 

**Available Technologies** 

**Contact Us** 

**Request Information** 

**Permalink** 

# Fabricating Crystallinity Unique Carbon Nanowires (~5nm) with Ultrahigh Electrical Conductivity

Tech ID: 32499 / UC Case 2019-923-0

#### **BRIEF DESCRIPTION**

UCI engineers have designed a new protocol for the synthesis of technology materials that uses electrospinning to draw polymers into ~5nm carbon nanowires.

#### SUGGESTED USES

- ·Creation of ~5nm carbon nanowires
- ·Scalable nanofabrication

#### FEATURES/BENEFITS

- ·This new method can synthesize 5nm wires which can then be integrated onto desired substrates
- ·Scalability
- ·Not wavelength limited

#### **TECHNOLOGY DESCRIPTION**

The advancement of technology has been accompanied by a steady decrease in the size of materials used. Unfortunately, current methods are unable to produce materials such as carbon nanowires under 5nm including lithography. A new synthesis method developed by UCI engineers uses electric force to draw polymer solutions to ~5nm fiber diameters (electrospinning), allowing a new step in technology miniaturization.

#### STATE OF DEVELOPMENT

Technique has been developed, wires created and tested for conductivity

#### PATENT STATUS

| Country                  | Туре          | Number     | Dated      | Case     |
|--------------------------|---------------|------------|------------|----------|
| United States Of America | Issued Patent | 11,846,042 | 12/19/2023 | 2019-923 |

#### CONTACT

Alvin Viray aviray@uci.edu tel: 949-824-3104.



#### **INVENTORS**

» Madou, Marc J.

# OTHER INFORMATION

#### CATEGORIZED AS

- » Materials & Chemicals
  - » Nanomaterials
  - » Polymers
- » Nanotechnology
  - » Materials

#### RELATED CASES

2019-923-0

#### ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- LaserPack: A burstable liquid storage package for biological material storage and valve substitution
- FlexThrough: a recirculation mechanism for point of care, centrifugal disk-based microfluidic devices
- Flexthrough: A Recirculation Mechanism In Point Of Care CD Microfluidic Using Elastic Membrane

## **UCI** Beall Applied Innovation

5270 California Avenue / Irvine, CA 92697-7700 / Tel: 949.824.2683



© 2021 - 2023, The Regents of the University of California Terms of use Privacy Notice