

Inhibitors of Bromodomain and Extra-Terminal (BET) Family Proteins as Potential Treatments for Drug-Resistant Tumors

Tech ID: 32333 / UC Case 2021-639-0

ABSTRACT

Researchers at the University of California, Davis have developed small molecule inhibitors for use in treating drug-resistant tumors – including cancerous tumors.

FULL DESCRIPTION

The bromodomain and extra-terminal (BET) protein family has an established role in cell cycle regulation and epigenetic sensing. The interactions between BET and other cellular proteins can lead to inflammation, obesity, DNA damage, cancerous tumor growth, and other serious clinical conditions and are a therapeutic target for small molecule inhibitors. Existing treatments are often either ineffective or "over-selective" – thus impeding other critical cellular processes. Given the current state, there is an unmet need to both improve bromodomain-based inhibitors and develop alternate therapies.

Researchers at the University of California, Davis have identified several small molecules that effectively inhibit BET protein expression through computer modeling and drug screening. Follow-on pre-clinical experiments have shown effectiveness in reducing the growth of drug-resistant tumors and in a synergistic fashion when combined with existing therapies, and therefore may prove valuable either alone or in conjunction with other treatment options.

APPLICATIONS

- ▶ Use alone or with existing cancer treatments to reduce drug-resistant tumor growth
- Potential use in treatment for other conditions induced by BET protein interactions

FEATURES/BENEFITS

- Novel therapy for advanced cancer
- Reduced side effects by only inhibiting necessary interactions
- Improved treatment outcomes

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20240189304	06/13/2024	2021-639

CONTACT

Victor Haroldsen haroldsen@ucdavis.edu tel: 530-752-7717.

INVENTORS

- Armstrong, Cameron
- ► Gao, Allen C.
- Ning, Shu

OTHER INFORMATION

KEYWORDS Bromodomain, Cancer Treatments, Multiple Sclerosis, Oncology, Prostate Cancer, Small Molecule Inhibitors, BET Protein Family, Drug-Resistant Tumors

CATEGORIZED AS

Medical

- Disease:
- Autoimmune and
- Inflammation
- Disease: Cancer
- Disease: Central
- Nervous System
- ► Therapeutics

RELATED CASES

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Novel Prostate Cancer Treatment
- Steroid Sulfatase Inhibitors For Hormone Related Cancers
- ▶ AKR1C3 and Androgen Receptor-Inhibiting Compounds for Treatment of Advanced Cancers

University of California, Davis	Tel:	© 2021 - 2024, The Regents of t	he University of
Technology Transfer Office	530.754.8649		California
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucdavis.edu		<u>Terms of use</u>
Davis,CA 95616	https://research.ucdavis.edu/technology-		Privacy Notice
	<u>transfer/</u>		
	Fax:		
	530.754.7620		