Berkeley IPIRA

Request Information

HIGH FIDELITY 3D PRINTING THROUGH COMPUTED AXIAL LITHOGRAPHY

Tech ID: 32285 / UC Case 2021-107-0

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Reference for National Filings	WO 2023/081404	05/11/2023	2021-107
Patent Pending				
BRIEF DESCRIPTION				
The inventor has developed novel a	algorithms and metrology methodologies,	including real-time in-situ imag	jing of part formati	on, in computed
axial lithography printing (CALP). C	ALP is a form of continuous 3D roll-base	d additive manufacturing which	is distinct from rol	l-based
micro/nanomanufacturing methods	such as imprint lithography, gravure print	ing, and photo-roll lithography	because it enables	s production of
high aspect ratio reentrant features	and voids in a single step that are difficu	It or even impossible with the e	xisting methods.	
SUGGESTED USES				
The invention has applications in m	echanical metamaterials, microfluidics, 3	D tissue culturing, and desaling	ation	
···· ··· ···· ··· ··· ··· ··· ··· ···	,,,,,,,,,,,,			
ADVANTAGES				
	·····		1100 L	
i his technology enables production	i or nign aspect ratio reentrant features a	nd voids in a single step that ar	e difficult or even i	mpossible with
the existing methods				

RELATED MATERIALS

CONTACT

Michael Cohen mcohen@berkeley.edu tel: 510-643-4218.

Permalink

INVENTORS

» Taylor, Hayden K.

OTHER INFORMATION

KEYWORDS

3D Printing

CATEGORIZED AS

>> Environment

» Other

» Remediation

» Engineering

» Engineering

» Materials & Chemicals

» Other

» Medical

» Other

RELATED CASES 2021-107-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Computed Axial Lithography (CAL) For 3D Additive Manufacturing
- Roll-To-Roll Based 3D Printing Through Computed Axial Lithography
- System And Method For Tomographic Fluorescence Imaging For Material Monitoring

University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704
Tel: 510.643.7201 | Fax: 510.642.4566
https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu
© 2021, The Regents of the University of California
Terms of use | Privacy Notice