Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction
Tech ID: 32268 / UC Case 2020-714-0

BACKGROUND

Conventional tunnel junction micro-LEDs currently face challenges of higher voltage penalties and varied voltage with different device sizes. Unfortunately, size-dependent voltage characteristics limit the applications of micro-LEDs and result in a lack of device reliability. Thus, overcoming the size dependence of the forward voltage in tunnel junction micro-LEDs would increase their potential to meet the demands of next-generation display applications.

DESCRIPTION

Researchers at the University of California, Santa Barbara have fabricated size-independent forward voltage micro-LEDs with an epitaxial tunnel junction comprised of p+GaN and n+GaN layers. This technology employs n+GaN layers with patterns of holes or vias to provide activation of the p+GaN type layer. The micro-LEDs produced using this approach with a Si doping concentration in the n+GaN layers higher than $1.7 \times 10^{20} \text{ cm}^{-3}$ demonstrated a forward voltage at 20A cm$^{-2}$ that was stable and uniform around 3.4V. Therefore, this technique solves the issue of forward voltage variation in different size tunnel junction micro-LEDs by realizing a size-independent low forward voltage.

ADVANTAGES

> Size-independent forward voltage
> Increases reliability of micro-LEDs in expanded applications

APPLICATIONS

> Micro-LEDs

RELATED CASES

2020-714-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

> Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
> High Efficiency LED with Optimized Photonic Crystal Extractor
> Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
> Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
> Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
> Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
> Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
> Defect Reduction in GaN films using in-situ SiNx Nanomask
> Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
> Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
> Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
> Phosphor-Free White Light Source
> Low Temperature Deposition of Magnesium Doped Nitride Films
> Transparent Mirrorless (TML) LEDs
> Improved GaN Substrates Prepared with Ammonothermal Growth
> Laser Diode With Tunnel Junction Contact Surface Grating
> Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- GaN Interlayer Design to Fully Eliminate V-Pits from InGaN Pseudo-Substrates
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Improved Manufacturing of Solid State Lasers via Patterned of Photonic Crystals
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Method for Increasing GaN Substrate Area in Nitride Devices
- Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures

Enhancing Growth of Semipolar (Al,Ga,In,B)N Films via MOCVD