Incorporating Temperature-Sensitive Layers in III-N Devices

Tech ID: 31877 / UC Case 2019-939-0

BACKGROUND

Typical III-N devices are limited by temperature sensitivity in the active region when growing p-GaN on top at higher temperatures. Due to concerns with unintentional Mg-doping incorporation and the necessary activation step post-growth, p-GaN is typically grown last in a device structure. Growing p-GaN at high temperatures disturbs regions in the device with poor stability at higher temperatures by causing active region degradation. The ability to grow potential devices is restricted by high temperature p-GaN growth.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a III-V device that uses active regions with low temperature stability, such as InN or high indium content InGaN quantum dots or wells. This technology addresses growth concerns associated with p-type GaN by growing p-GaN first, and mitigating impurity incorporation into p-GaN:Mg by depositing the p-GaN prior to the growth of the active region. This technology also leverages the capabilities of the N-polar face, which is the slowest-grown plane in MOCVD. Devices that were previously impossible to grow, due to the high temperature p-GaN growth and capping of InN quantum dots, can be enabled via the slow growth of the N-polar direction – an essential benefit for longer wavelength III-V devices, including infrared.

ADVANTAGES

▶ Increases device growth potential
▶ Reduces p-GaN growth temperature
▶ Long wavelength applications

APPLICATIONS

▶ LEDs
▶ Laser Diodes

PATENT STATUS

Patent Pending

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
▶ High Efficiency LED with Optimized Photonic Crystal Extractor
▶ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
▶ Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
▶ Achieving “Active P-Type Layer/Layers” In III-Nitride Epitaxial Or Device Structures Having Buried P-Type Layers
▶ High-Quality N-Face GaN, InN, AIN by MOCVD
▶ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
▶ Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
▶ Defect Reduction in GaN films using in-situ SiNx Nanomask
▶ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
▶ Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Phosphor-Free White Light Source
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Laser Diode With Tunnel Junction Contact Surface Grating
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction
- A Structure For Increasing Mobility In A High-Electron-Mobility Transistor
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Fabrication of Relaxed Semiconductor Films without Crystal Defects
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- GaN-based Vertical Metal Oxide Semiconductor and Junction Field Effect Transistors
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- GaN Interlayer Design to Fully Eliminate V-Pits from InGaN Pseudo-Substrates
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Improved Manufacturing of Solid State Lasers via Patternining of Photonic Crystals
- III-N Transistor With Stepped Cap Layers
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Method for Increasing GaN Substrate Area in Nitride Devices
- Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD