

INNOVATIONACCESS AVAILABLE TECHNOLOGIES CONTACT US

Request Information

Permalink

Imaging Modalities and Methods for Enhanced, Label-free Histopathology During Surgery

Tech ID: 31816 / UC Case 2019-580-0

ABSTRACT

Researchers at the University of California, Davis have developed new techniques capable of producing near real-time tissue analysis with quality and accuracy attributes comparable to traditional Haemotoxylin and Eosin (H&E) histopathology methods.

FULL DESCRIPTION

H&E methods can involve multiple tissue or biopsy preparation steps. Thus, these processes typically require elapsed times that are often incompatible with optimal intra-operative decision-making regarding the amount of tissue to be removed during surgery. Therefore, the field of pathology would be advanced – and positive surgical outcomes with reduced side effects would increase – if histopathological processes with reduced time scales were implemented.

Researchers at the University of California Davis have developed a label-free, spectral, pathology method that can quickly identify regions of diseased tissue *in vivo* without the need for traditional hematoxylin and eosin staining. A multimodal microscope capable of acquiring varied and simultaneous microscopy/spectroscopy images of unstained tissue can survey the tissue structure and architecture, and - by comparing unique tissue signatures provided by the microscope, discriminate between diseased and healthy cells. This method overcomes historical limitations associated with current approaches to intra-operative histopathology.

APPLICATIONS

Intraoperative pathology

FEATURES/BENEFITS

- Offers a label-free method for near, real-time pathology results
- Reduces average times surgical patients remain under anesthesia
- Increases accuracy of tissue removal during surgery

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	2022038693	12/08/2022	2019-580
Patent Cooperation Treaty	Published Application	2021/092489	06/24/2021	2019-580

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► An Optical System for Parallel Acquisition of Raman Spectra from a 2-Dimensional Laser Beam Array
- ▶ Label-free, Non-genetic Methods of Sorting Human Stem Cell Derived Cardiomyocytes

CONTACT

Victor Haroldsen haroldsen@ucdavis.edu tel: 530-752-7717.

INVENTORS

- ► Chan, James W.
- ► Saadai, Payam

OTHER INFORMATION

KEYWORDS

Pathology, Histopathology,

Inter-operative, Label-free

CATEGORIZED AS

- **▶** Imaging
 - ▶ Medical
- ▶ Medical
 - Diagnostics
 - ▶ Imaging
 - Screening

RELATED CASES

2019-580-0

University of California, Davis
InnovationAccess
1850 Research Park Drive, Suite 100, ,
Davis,CA 95618

Tel: 530.754.8649

innovationAccess@ucdavis.edu

research.ucdavis.edu/u/s/ia

Fax: 530.754.7620

 $\ \ \,$ $\ \$ $\ \ \,$ $\ \ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\ \ \,$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\$ $\$ $\ \$ $\$ $\ \$ $\$