DECORATING CHROMATIN FOR PRECISE GENOME EDITING USING CRISPR

Tech ID: 31814 / UC Case 2020-089-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

A novel fusion construct that fuses Cas9 to a truncated version of human PRDM9 with the purpose of improving precise genome editing via homologous directed repair (HDR). PRDM9 is a protein that deposits histone marks H3K4me3 and H3K36me3 simultaneously during meiosis to mark recombination hot spots where crossover occurs and is resolved by homologous recombination. H3K36me3 has also been demonstrated to be required upstream of homologous recombination repair after double stranded breaks (DSBs) and during V(D)J recombination for adaptive immunity. Recent evidence suggests PRDM9 acts as a pioneer factor opening closed chromatin. The newly engineered PRDM9C-Cas9 fusion construct shows increased HDR and decreased non-homologous end joining mediated insertions and deletions (indels).

SUGGESTED USES

This newly engineered construct can be used to improve targeted insertions and substitutions mediated by CRISPR gene editing. Because of PRDM9’s function as a pioneer factor we expect this tool to allow increased HDR:indel ratios across different cell types and regardless of preexisting chromatin architecture. This is relevant to editing in mammalian cells, plants, yeast and any other organisms that organize their DNA into chromatin. We also expect this tool to lead to more precise genome editing in primary cell lines which would be relevant for medical applications.

ADVANTAGES

RELATED MATERIALS

INVENTORS

Doudna, Jennifer A.

CONTACT

Terri Sale
terri.sale@berkeley.edu
tel: View Phone Number

OTHER INFORMATION

KEYWORDS

Cas9, PRDM9, CRISPR

CATEGORIZED AS

Agriculture & Animal Science
Biotechnology
Genomics
Environment
Medical
Gene Therapy
Research Tools
Veterinary

RELATED CASES

2020-089-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Methods and Compositions for Using Argonaute to Modify a Single-Stranded Target Nucleic Acid
- COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS
- Cas9 Variants With Altered DNA Cleaving Activity
- Cas12-mediated DNA Detection Reporter Molecules
- Improved guide RNA and Protein Design for CasX-based Gene Editing Platform
- Cas13a/C2c2 - A Dual Function Programmable RNA Endonuclease
- Methods For High Signal-To-Noise Imaging Of Chromosomal Loci In Cells Using Fluorescent Cas9
- A Dual-RNA Guided CasZ Gene Editing Technology
- MODULATORS OF TYPE VI-D CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-VariPhi")
- A Protein Inhibitor Of Cas9
- Small Cas9 Protein Inhibitor
Split-Cas9 For Regulatable Genome Engineering
- Optimized Virus-like Particles for Cas9 RNPs & Transgene/HDR Template Delivery
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-Theta")
- COMPOSITIONS AND METHODS FOR INCREASING HOMOLOGY-DIRECTED REPAIR
- CRISPR CASY COMPOSITIONS AND METHODS OF USE
- Single Conjugative Vector for Genome Editing by RNA-guided Transposition
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-Omega")
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- Engineered/Variant Hyperactive CRISPR CasPhi Enzymes And Methods Of Use Thereof
- Type V CRISPR/CAS Effector Proteins for Cleaving ssDNA and Detecting Target DNA
- THERMOSTABLE RNA-GUIDED ENZYMES AND METHODS OF USE THEREOF (GeoCas9)
- Structure-Guided Methods Of Cas9-Mediated Genome Engineering
- Endonucleases For Rna Detection And Analysis
- Efficient Site-Specific Integration Of New Genetic Information Into Human Cells
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF (CasGamma)
- Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE
- Compositions and Methods of Use for Variant Csy4 Endoribonucleases
- Identification Of Sites For Internal Insertions Into Cas9
- Chimeric Cas9 Variants With Novel Engineered Enzymatic Activities
- Small Molecule Assisted Cell Penetrating Cas9 RNP Delivery
- Methods and Compositions for Controlling Gene Expression by RNA Processing