

Technology & Industry Alliances Available Technologies Contact Us

Request Information Permalink

III-Nitride Tunnel Junction LED with High Wall Plug Efficiency

Tech ID: 31762 / UC Case 2017-131-0

BACKGROUND

Commercially-available III-nitride light-emitting diodes (LEDs) use an active region in a biased p-n junction to allow for electron and hole injection. The p-GaN is difficult to contact electrically and has low hole concentration and mobility. This means that p-GaN cannot be used as a current spreading layer and that traditional p-contacts will add significant voltage to devices. Despite these inherent problems, all commercial light emitting devices utilize a p-contact and a material other than p-GaN for current spreading, typically transparent conducting oxides (TCO).

DESCRIPTION

Researchers at the University of California, Santa Barbara have introduced an n-GaN layer that produces less loss than a traditional transparent conducting oxide. The favorable current spreading of the n-GaN layer also helps to reduce the droop observed in previous iterations of III-Nitride LEDs. The combined benefits of this novel current spreading layer materialize into a device with over 70% wall plug efficiency.

ADVANTAGES

- ► Improved light extraction
- ► Improved energy efficiency (over 70%)
- ▶ No requirement for TCOs or mirrors

APPLICATIONS

▶ III-Nitride LEDs

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	11,164,997	11/02/2021	2017-131

RELATED TECHNOLOGIES

- ▶ Contact Architectures for Tunnel Junction Devices
- ▶ Methods for Fabricating III-Nitride Tunnel Junction Devices
- ▶ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide

CONTACT

Pasquale S. Ferrari ferrari@tia.ucsb.edu tel: .

INVENTORS

- ▶ DenBaars, Steven P.
- Nakamura, Shuji
- ▶ Speck, James S.
- ➤ Yonkee, Benjamin P.
- ▶ Young, Erin C.

OTHER INFORMATION

KEYWORDS

LED, tunnel junction, GaN, IIInitride LED

CATEGORIZED AS

- Energy
 - Lighting
- Semiconductors
 - Design and

Fabrication

RELATED CASES

2017-131-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- ▶ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- ▶ III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- ▶ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- ▶ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- ▶ Ultraviolet Laser Diode on Nano-Porous AlGaN template
- Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Oxyfluoride Phosphors for Use in White Light LEDs
- (In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- ► Thermally Stable, Laser-Driven White Lighting Device
- ► Methods for Fabricating III-Nitride Tunnel Junction Devices
- ► Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- ► Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- ► Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- ► Tunable White Light Based on Polarization-Sensitive LEDs
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- ▶ Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
- A Method To Lift-Off Nitride Materials With Electrochemical Etch
- ▶ High-Intensity Solid State White Laser Diode
- ▶ Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- ► GaN-Based Thermoelectric Device for Micro-Power Generation
- ▶ Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- ▶ High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template
- ▶ UV Optoelectronic Devices Based on Nonpolar and Semi-polar AllnN and AllnGaN Alloys
- ▶ III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture

in