III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
Tech ID: 31762 / UC Case 2017-131-0

BACKGROUND

Commercially-available III-nitride light-emitting diodes (LEDs) use an active region in a biased p-n junction to allow for electron and hole injection. The p-GaN is difficult to contact electrically and has low hole concentration and mobility. This means that p-GaN cannot be used as a current spreading layer and that traditional p-contacts will add significant voltage to devices. Despite these inherent problems, all commercial light emitting devices utilize a p-contact and a material other than p-GaN for current spreading, typically transparent conducting oxides (TCO).

DESCRIPTION

Researchers at the University of California, Santa Barbara have introduced an n-GaN layer that produces less loss than a traditional transparent conducting oxide. The favorable current spreading of the n-GaN layer also helps to reduce the droop observed in previous iterations of III-Nitride LEDs. The combined benefits of this novel current spreading layer materialize into a device with over 70% wall plug efficiency.

ADVANTAGES

▶ Improved light extraction
▶ Improved energy efficiency (over 70%)
▶ No requirement for TCOs or mirrors

APPLICATIONS

▶ III-Nitride LEDs

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>11,164,997</td>
<td>11/02/2021</td>
<td>2017-131</td>
</tr>
</tbody>
</table>

CATEGORIZED AS

▶ Energy
▶ Lighting
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES

2017-131-0

RELATED TECHNOLOGIES

▶ Contact Architectures for Tunnel Junction Devices
▶ Methods for Fabricating III-Nitride Tunnel Junction Devices
▶ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
▶ III-Nitride Tunnel Junction with Modified Interface
▶ Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
▶ Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
▶ Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
▶ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
▶ III-Nitride-Based Devices Grown With Relaxed Active Region
▶ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
▶ Defect Reduction in GaN films using in-situ SiNx Nanomask
Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide

Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices

Low Temperature Deposition of Magnesium Doped Nitride Films

Transparent Mirrorless (TML) LEDs

Improved GaN Substrates Prepared with Ammonothermal Growth

Optimization of Laser Bar Orientation for Nonpolar Laser Diodes

Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction

Method for Enhancing Growth of Semipolar Nitride Devices

III-Nitride Tunnel Junction with Modified Interface

Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals

Nonpolar III-Nitride LEDs With Long Wavelength Emission

Increased Light Extraction with Multistep Deposition of ZnO on GaN

Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs

Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications

High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices

Method for Growing High-Quality Group III-Nitride Crystals

Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure

Oxyfluoride Phosphors for Use in White Light LEDs

Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices

(In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance

Thermally Stable, Laser-Driven White Lighting Device

MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride

Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy

Highly Compact, High-Index Dielectric Nanostructures for Deep-Ultraviolet Devices

Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs

Methods for Fabricating III-Nitride Tunnel Junction Devices

Low-Droop LED Structure on GaN Semi-polar Substrates

Contact Architectures for Tunnel Junction Devices

Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface

Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures

Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance

III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material

Growth of Semipolar III-V Nitride Films with Lower Defect Density

Improved Manufacturing of Solid State Lasers via Patternning of Photonic Crystals

High Efficiency III-Nitride Devices with Smooth Relaxed InGaN Buffer and Strain Compliant Template

Tunable White Light Based on Polarization-Sensitive LEDs

Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN

Growth of High-Performance M-plane GaN Optical Devices

Packaging Technique for the Fabrication of Polarized Light Emitting Diodes

Improved Anisotropic Strain Control in Semipolar Nitride Devices

High Light Extraction Efficiency III-Nitride LED

III-V Nitride Device Structures on Patterned Substrates

Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs

Method for Increasing GaN Substrate Area in Nitride Devices

Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact

Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy

GaN-Based Thermoelectric Device for Micro-Power Generation

Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patternning

LED Device Structures with Minimized Light Re-Absorption

Growth of Planar Semi-Polar Gallium Nitride

Nonpolar (Al, In, Ga)N Quantum Well Design

UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys

Defect Reduction of Non-Polar and Semi-Polar III-Nitrides

III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture