

A New Cell-free Protein Expression System with three-fold higher protein yield in batch and continuous mode than existing systems

Tech ID: 30602 / UC Case 2019-808-0

ABSTRACT

Researchers at the University of California, Davis have developed a method for preparing a bacterial cell lysate that results in higher protein expression than existing cell-free systems. The new whole-cell lysate system comes with additional advantages, including the ability to synthesize protein from linear DNA, directly amenable to continuous or flow-based reaction, and compatibility with existing manufacturing workflow.

FULL DESCRIPTION

The ability to generate a significant amount of proteins is critical for research and commercial activities such as drug screening and production, x-ray crystallography, and metabolic engineering. Cell-free systems have emerged as a potential method for protein production – in part because they do not require compatibility with the host. Unfortunately, the cost per milligram of protein obtained using existing cell-free systems is currently too high for widespread adoption. While preparation and substrate optimization have led to incremental increases in protein production methods over the years, no significant, qualitative advances in this field have been observed recently.

Researchers at the University of California, Davis have developed methods and compositions of matter for preparing a new cell-free system using an engineered *E. coli* consortium. This new method induces cell-adaptation to the high demand for protein synthesis. The induced cells are then used to generate cell-lysates with high-performance for cell-free protein synthesis. This invention allows for 3-fold higher protein production than currently available systems in both batch and continuous reaction modes. Furthermore, the new whole-cell lysate system directly allows for the production of proteins from linear DNA (i.e., PCR products and synthetic DNAs). Finally, the preparation of the new system is compatible with existing manufacturing workflow. It requires only the change of cell-strains used for manufacturing.

APPLICATIONS

- ▶ Preparation of a bacterial lysate for *in vitro* or cell-free protein expression
- ▶ Use in fields where current techniques of this type are not economically competitive at commercial scale

FEATURES/BENEFITS

- ▶ Results in 3-fold higher protein expression than commercially available, whole-cell lysates
- ▶ Results in a more targeted translation machinery than current production methods
- ▶ Allows cell-free synthesis of proteins from linear DNA
- ▶ Requires only the change of bacterial strains in existing manufacturing workflow

CONTACT

Pooja N. Bhayani
pnbhayani@ucdavis.edu
 tel: .

INVENTORS

- ▶ Contreras Llano, Luis Eduardo
- ▶ Meyer, Conary
- ▶ Tan, Cheemeng
- ▶ Villarreal, Fernando

OTHER INFORMATION

KEYWORDS

Cell-free, whole-cell
 lysate, *in vitro*
 transcription and
 translation, protein
 expression, *E. coli*

CATEGORIZED AS

- ▶ **Biotechnology**
- ▶ **Other**
- ▶ **Medical**
- ▶ **Delivery Systems**
- ▶ **Research Tools**
- ▶ **Research Tools**
- ▶ **Protein Synthesis**

RELATED CASES

2019-808-0

- Can be used in both batch and continuous reaction modes

PATENT STATUS

Country	Type	Number	Dated	Case
United States Of America	Issued Patent	11453,902	09/27/2022	2019-808

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Protein Translation Machinery One Shot (TraMOS) Tool
- Hydrogelated Bacteria as Antibacterial Vaccines
- Hydrogelated Cells for Regenerative Medicine Applications
- Generalizable and Non-genetic Approach to Create Metabolically-active-but-non-replicating Bacteria

University of California, Davis

Technology Transfer Office

1 Shields Avenue, Mrak Hall 4th Floor,
Davis, CA 95616

Tel:

530.754.8649

techtransfer@ucdavis.edu

<https://research.ucdavis.edu/technology-transfer/>

Fax:

530.754.7620

© 2019 - 2022, The Regents of the University of

California

[Terms of use](#)

[Privacy Notice](#)