Device and Method for Microscale Chemical Reactions
Tech ID: 30291 / UC Case 2017-380-0

SUMMARY
UCLA researchers in the Departments of Bioengineering and Molecular and Medical Pharmacology have developed a passive microfluidic reactor chip with a simplified design that is less costly than existing microfluidic chips.

BACKGROUND
Although positron emission topography (PET) imaging is playing an increasingly important role in the research and clinical management of diseases, access to the radioactive tracers required for such imaging is limited due to the tracers’ short half-lives and high cost of production. Digital microfluidic chip technology has been used to miniaturize various assays and synthesis processes and reduce associated costs, including the synthesis of radiopharmaceuticals. For instance, initial research has been conducted on the synthesis of radioactive tracers using a type of digital microfluidic chip known as an electrowetting-on-dielectric (EWOD) chip. Though this platform enabled the demonstration of many important advantages of miniaturized radiosynthesizers, this chip has not yet been widely adopted, in large part due to its complexity and the high cost of prototype chips.

INNOVATION
UCLA researchers in the Departments of Bioengineering and Molecular and Medical Pharmacology have developed a simplified EWOD digital microfluidic reactor chip with passive, rather than electrical, droplet manipulation. This passive manipulation, when combined with a temperature control mechanism, allows for a simplified chip on which it is possible to perform all of the unit operations needed for multistep radiochemical reactions. The simplified chip is also less costly and more reliable than existing microfluidic chips. Applications of the new EWOD chip range from the synthesis of radioactive tracers to the production of radiolabeled therapeutic molecules.

APPLICATIONS
▶ Production of radioactive tracers for PET imaging
▶ Production of agents for single-photon emission computed tomography (SPECT) imaging
▶ Production of radiolabeled peptides and proteins
▶ Production of radiolabeled therapeutic molecules
▶ Performing reactions at small scale to minimize reagent consumption/cost

ADVANTAGES
▶ Reduced cost of reagents
▶ Reliable performance
▶ Easily operable with a simplified design
▶ Chips have a low cost and are disposable

STATE OF DEVELOPMENT
Synthesis of many different radiopharmaceuticals has already been demonstrated.

RELATED MATERIALS

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Issued Patent</td>
<td>602017035439.2</td>
<td>03/24/2021</td>
<td>2017-380</td>
</tr>
<tr>
<td>France</td>
<td>Issued Patent</td>
<td>3523047</td>
<td>03/24/2021</td>
<td>2017-380</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Issued Patent</td>
<td>3523047</td>
<td>03/24/2021</td>
<td>2017-380</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>20200179927</td>
<td>06/11/2020</td>
<td>2017-380</td>
</tr>
</tbody>
</table>
Gateway to Innovation, Research and Entrepreneurship

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Microscale Device and Method for Purification of Radiopharmaceuticals
- Novel Method of Radiofluorination
- Accurate and Rapid Micromixer for Integrated Microfluidic Devices
- Digital Microfluidic Platform for Radiochemistry
- Method for Concentration and Formulation of Radiopharmaceuticals
- Device and Method for Accurate Sample Injection in Analytical Chemistry
- Disposable World-to-Chip Interface for Digital Microfluidics