

Request Information

# Engineered Biomaterial to Prevent Endothelial Inflammation

Tech ID: 30261 / UC Case 2019-557-0

#### **ABSTRACT**

Researchers at the University of California, Davis have developed a biocompatible material to mimic the glycocalyx, the natural layer of molecules that coats the outside of endothelial cells. This technology can be used to treat inflammation in diseases characterized by dysfunction in leukocyte-endothelial cell interactions.

#### **FULL DESCRIPTION**

Endothelial cells can lose glycocalyx when patients face chronic or acute systemic inflammation like that seen in COVID-19 or following ischemia reperfusion injury. When this loss of glycocalyx occurs, cell surface receptors are exposed to the extracellular environment. Circulating white blood cells (WBCs) then encounter the exposed receptors and bind to them - inducing an adverse inflammatory response. While circulating platelets support thrombus formation after encountering the receptors.

Researchers at the University of California Davis have developed an engineered biomaterial that prevents this inflammatory response by binding to the exposed receptors, thereby "hiding" the endothelial cell from the WBCs and platelets. The biomaterial consists of two parts: a binding peptide resistant to enzymatic degradation; and a glycosaminoglycan. The binding peptide has a unique, peptide-resistant sequence that improves function at lower doses. Its overall composition is very similar to that of natural glycocalyx, making it a likely candidate for safe and effective use as a therapeutic in humans.

# **APPLICATIONS**

- ▶ A therapeutic for treating coagulopathy without systemic antiplatelet activity
- ► Reducing endothelial cell inflammation
- ▶ Minimizing disease-caused dysfunction in leukocyte-endothelial cell interactions

# FEATURES/BENEFITS

- Protease-resistant
- ▶ Very similar to natural counterpart
- ► Endothelial cell receptor-specificity

#### **PATENT STATUS**

| Country            | Туре                   | Number      | Dated      | Case  |
|--------------------|------------------------|-------------|------------|-------|
| Patent Cooperation | Reference for National | 2020/205602 | 10/08/2020 | 2019- |
| Treaty             | Filings                | A1          |            | 557   |

### CONTACT

University of California, Davis Technology Transfer Office techtransfer@ucdavis.edu tel: 530.754.8649.



#### **INVENTORS**

- ► Chiamvimonvat,
- Nipavan
- Dehghani, Tima
- ▶ Lam, Kit S.
- Liu, Ruiwu
- Panitch, Alyssa
- Sodhi,

Harkanwalpreet

► Thai, Phung

# OTHER INFORMATION

# **KEYWORDS**

glycocalyx, endothelial cell, leukocyte, peptide, mimetic, glycosaminoglycan, inflammation response, platelet, coagulopathy

#### **CATEGORIZED AS**

► Materials & Chemicals

▶ Other

Patent Pending

#### ▶ Medical

Disease:

Autoimmune and

Inflammation

Disease:

Respiratory and

Pulmonary System

▶ Therapeutics

#### **RELATED CASES**

2019-557-0

#### ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Novel Solid Tumor Chemodrug LLS2
- ▶ Affinity Peptides for Diagnosis and Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 and Zika Virus Infections
- ▶ Nanoparticles for Drug Delivery, Tissue Targeting and Imaging Analysis
- ▶ Conjugates That Combine HDAC Inhibitors and Retinoids into Disease Preventatives/Treatments
- ► Artificial Intelligence-Based Evaluation Of Drug Efficacy
- ▶ Soluble Epoxide Hydrolase-Conditioned Stem Cells for Cardiac Cell-Based Therapy
- ▶ A Novel RGD-Containing Cyclic Peptide for use in Cancer Imaging and as a Targeted-Therapy Ligand
- ► Site-Specific Ligation and Compound Conjugation to Existing Antibodies
- ► Ligands for Alpha-4-Beta-1 Integrin
- ► Functional Illumination in Living Cells

**University of California, Davis** 

- ▶ Beneficial Effects of Novel Inhibitors of Soluble Epoxide Hydrolase as Adjuvant Treatment for Cardiac Cell-Based Therapy
- ► Multifunctional Porphyrin-Based Nanomedicine Platform
- ▶ PVA Nanocarrier System for Controlled Drug Delivery
- ▶ Systems and Methods of Single-Cell Segmentation and Spatial Multiomics Analyses

| Technology Transfer Office             | 530.754.8649                             | California     |
|----------------------------------------|------------------------------------------|----------------|
| 1 Shields Avenue, Mrak Hall 4th Floor, | techtransfer@ucdavis.edu                 | Terms of use   |
| Davis,CA 95616                         | https://research.ucdavis.edu/technology- | Privacy Notice |
|                                        | transfer/                                |                |
|                                        | Fax:                                     |                |
|                                        | 530.754.7620                             |                |

Tel:

© 2019 - 2022, The Regents of the University of