

Technology Development Group

Available Technologies

Contact Our Team

Request Information

Permalink

Broadband Comb-Based Spectrum Sensing

Tech ID: 29981 / UC Case 2019-266-0

SUMMARY

Researchers at the UCLA Department of Electrical & Computer Engineering have developed a millimeter-wave spectrum analyzer that uses a non-linear fast switch to generate a broadband frequency comb local oscillator (LO) with a tunable repetition rate.

BACKGROUND

Broadband integrated circuits in millimeter-wave and terahertz (THz) frequencies provide low-cost and compact solutions for high-resolution hyper-spectral imaging and molecular spectroscopy. Non-linearity of the direct CMOS THz detectors based on the plasma-wave effect in MOS transistors recovers the power of the millimeter-wave/THz signal for building imaging arrays. However, in order to develop hyper-spectral imaging systems or trace-gas spectrometers, coherent receivers are required to extract the frequency content. Sub-harmonic mixers have been used in to coherently receive the sub-THz signals. High-power LO signals are needed in these mixers to down-convert the received signal to low frequencies and multiple VCOs need to be implemented to cover a wide LO frequency range.

INNOVATION

Researchers at UCLA have developed a millimeter-wave spectrum analyzer that uses a non-linear fast switch to generate a broadband frequency comb LO with a tunable repetition rate. A broadband frequency comb with a frequency spacing of frep is used to detect the spectrum of any received signal within the same bandwidth. An NFET is used as a broadband heterodyne plasma-wave detector to down-convert the received tones to distinguishable low frequency tones. The receiver is operated from 30 to 160 GHz, where the maximum frequency is limited by measurement equipment.

APPLICATIONS

- ► High-resolution hyper-spectral imaging
- ► Molecular spectroscopy

ADVANTAGES

▶ The receiver operates at a wide frequency range, thus no longer require to down-convert the received signal

STATE OF DEVELOPMENT

The described millimeter-wave spectrum analyzer was tested experimentally.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20220103264	03/31/2022	2019-266

RELATED MATERIALS

- ▶ Aggrawal, H., Chen, P., Assefzadeh, M.M., Jamali, B. and Babakhani, A., 2016. Gone in a picosecond: Techniques for the generation and detection of picosecond pulses and their applications. IEEE Microwave Magazine, 17(12), pp.24-38.
- ▶ Jamali, B. and Babakhani, A., 2018. A Self-Mixing Picosecond Impulse Receiver With an On-Chip Antenna for High-Speed Wireless Clock Synchronization. IEEE Transactions on Microwave Theory and Techniques, 66(5), pp.2313-2324.

CONTACT

UCLA Technology Development Group

ncd@tdg.ucla.edu tel: 310.794.0558.

INVENTORS

▶ Babakhani, Aydin

OTHER INFORMATION

KEYWORDS

broadband, millimeter-wave, wireless communication, spectrum analyzer, spectrum sensing, CMOS, hyperspectral imaging

CATEGORIZED AS

- **▶** Computer
 - ▶ Hardware
- Engineering
 - Engineering
- **▶** Sensors & Instrumentation
 - Scientific/Research

RELATED CASES

2019-266-0

▶ Jamali, B. and Babakhani, A., 2016, May. Sub-picosecond wireless synchronization based on a millimeter-wave impulse receiver with an on-chip antenna in 0.13 μm SiGe BiCMOS. In Microwave Symposium (IMS), 2016 IEEE MTT-S International (pp. 1-4). IEEE.

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ A Battery-Less Wirelessly Powered Frequency-Swept Spectroscopy Sensor
- ▶ Guided-Wave Powered Wireless Sensors
- ▶ Vibration Sensing and Long-Distance Sounding with THz Waves
- ▶ THz Impulse and Frequency Comb Generation Using Reverse Recovery of PIN Diode

Gateway to Innovation, Research and Entrepreneurship UCLA Technology Development Group 10889 Wilshire Blvd., Suite 920,Los Angeles,CA 90095 tdg.ucla.edu Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu