

INNOVATION VENTURES AVAILABLE TECHNOLOGIES

CONTACT US

Request Information

CONTACT

Gemma E. Rooney

tel: 415-625-9093.

Gemma.Rooney@ucsf.edu

Permalink

Prospective Isolation Of Tumor-Reactive Cytotoxic CD4+ T Cells For Bladder Cancer Therapy

Tech ID: 29962 / UC Case 2018-159-0

INVENTORS

- Fong, Lawrence
- Kwek MacPhee,
- Serena
- ▶ Oh, David Y.
- Pai, Chien-Chun Stev
- ▶ Ye, Chun

OTHER INFORMATION

KEYWORDS

Immunotherapy, CD4+,

Cytotoxic T cells, Bladder

cancer

CATEGORIZED AS

Medical

- Disease: Cancer
- Therapeutics

RELATED CASES 2018-159-0

INVENTION NOVELTY

UCSF researchers have discovered a method for the isolation and expansion ex vivo of an endogenous population of bladder

tumor-reactive cytotoxic CD4+ T cells that can be used to specifically and potently treat bladder cancer.

VALUE PROPOSITION

Bladder cancer is one of the most common types of cancers in the US, with approximately 80,000 new cases diagnosed in 2018

alone. Current treatments include checkpoint immunotherapy, a broad method of inhibiting a mechanism by which cancer cells

evade the immune system.

Utilizing a novel combination of cell-surface markers, this method of isolating and expanding endogenous tumor reactive CD4+ T

cells provides a more specific immune response towards the treatment of bladder cancer.

ADVANTAGES OF TECHNOLOGY

- Identifies a novel, bladder tumor infiltrating population of T cells
- More **specific to bladder cancer** than other immunotherapy treatments
- Can be expanded ex vivo and has shown to possess cytotoxic activity towards tumor cells
- May have **fewer regulatory challenges** over engineered chimeric antigen receptor (CAR) approaches due to the

endogenous nature of these cytotoxic CD4+ T cells

- These identified markers and T cell receptor sequences could be used to transduce T cells to specifically target bladder cancer
- Identified markers and T cell receptors are potential targets for pharmacological manipulation for enhancement of activity

TECHNOLOGY DESCRIPTION

Researchers at UCSF, using single-cell RNA sequencing and T cell receptor sequencing of patient-derived bladder tumor cells,

have identified a series of gene expression markers and specific T cell receptors specific to infiltrating bladder tumor resident

CD4+ T cells. Utilizing these cell surface markers, they isolated this novel CD4+ T cell population, expanded it ex-vivo, and

confirmed its cytotoxic potential.

LOOKING FOR PARTNERS

To develop & commercialize the technology for cancer therapeutics.

STAGE OF DEVELOPMENT

Pre-clinical

DATA AVAILABILITY

Under CDA / NDA

PATENT STATUS

Country Type Number Dated Case	Country	Туре	Number	Dated	Case	
--------------------------------	---------	------	--------	-------	------	--

Patent Pending

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

► T Cell Signature Predictive of Clinical Outcome with Immunomodulatory Treatment

▶ NOVEL ANTIGEN TARGETS IN AUTOIMMUNE DISEASES (LUPUS AND TYPE I DIABETES) USEFUL FOR VACCINE DEVELOPMENT

AND TREATMENT

XYZeq – Spatially-Resolved Single Cell Sequencing

ADDRESS	CONTACT	CONNECT
UCSF	Tel:	Follow in Connect
Innovation Ventures	innovation@ucsf.edu	
600 16th St, Genentech Hall, S-272,	https://innovation.ucsf.edu	$^{\odot}$ 2018 - 2019, The Regents of the University
San Francisco,CA 94158	Fax:	of California
		Terms of use Privacy Notice