

Multiparametric Imaging with PET Scans Using High Temporal-Resolution Dynamic Data Acquisition and Modeling

Tech ID: 29764 / UC Case 2018-473-0

ABSTRACT

Researchers at the University of California, Davis, have developed a method to acquire and model high temporal resolution (1-2 seconds per frame) dynamic data with PET scans.

FULL DESCRIPTION

Current clinical PET scanning methods and data modeling allow for a temporal resolution of 5-10 seconds per frame with compromised image quality. A high temporal resolution dynamic PET scan can attain a higher temporal resolution, around 2 seconds per frame, but currently cannot be adequately resolved. New methodologies and models are needed to obtain and optimize high-resolution dynamic PET scanning data.

Researchers at the University of California, Davis, have developed a method to acquire and model high temporal resolution PET scans that are a function of temporal and spatial locations. This model is able to directly estimate blood flow and blood volume from the dynamic PET data using a single tracer injection. Using this method, for example, one can obtain simultaneous imaging of blood flow and glucose metabolism using a single dynamic 18F-FDG PET scan. This has applications in characterization of flow-metabolism mismatch or coupling in aggressive tumors, myocardial viability, and brain function in neurodegenerative diseases.

APPLICATIONS

- Data analysis of high temporal resolution PET scans
- Single tracer multiparametric imaging (e.g., perfusion-metabolism imaging by 18 F-FDG)
- Blood flow imaging and analysis
- Characterization of tumor aggressiveness in cancer therapy
- Myocardial viability in coronary artery disease
- Brain function in neurodegenerative diseases

FEATURES/BENEFITS

- Derives blood flow without a flow-specific tracer
- Allows for a reduced imaging time, cost, and radiation dose
- Requires only one tracer injection
 - Applicable to any radiotracers
- ▶ Is effective in all regions, including regions where extraction fraction is low
- Applicable to all existing clinical PET scanners

CONTACT

Victor Haroldsen haroldsen@ucdavis.edu tel: 530-752-7717.

INVENTORS

▶ Wang, Guobao

OTHER INFORMATION

KEYWORDS PET scan, high temporal resolution, time-varying model, multiparametric imaging, dynamic data, single tracer

CATEGORIZED AS

- Imaging
 - Medical
- Medical
 - Diagnostics
 - Imaging
 - ▶ Other

```
RELATED CASES
```

```
2018-473-0
```

RELATED MATERIALS

Wang GB. "High temporal-resolution dynamic PET image reconstruction using a new spatiotemporal kernel method". IEEE Trans Med Imaging. 2018 Sep 12. doi: 10.1109/TMI.2018.2869868. [Epub ahead of print]. - 09/12/2018

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	11,896,417	02/13/2024	2018-473

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Techniques for Improving Positron Emission Tomography Image Quality and Tracking Real-Time Biological Processes
- Quantitative Multiparametric PET/CT Imaging for Nonalcoholic Fatty Liver Diseases

University of California, Davis	Tel:	© 2018 - 2024, The Regents of th	ne University of
Technology Transfer Office	530.754.8649		California
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucdavis.	<u>edu</u>	Terms of use
Davis,CA 95616	https://research.ucdavis.edu/technology-		Privacy Notice
	<u>transfer/</u>		
	Fax:		
	530.754.7620		