

OTC Website Find Technologies Contact Us

Request Information Permalink

ABSTRACT: Ultra-Sensitive Nitrogen Dioxide Gas Sensor

Tech ID: 29665 / UC Case 2012-850-0

ABSTRACT

Over the past few decades, the detection of nitrogen dioxide (NO₂) in combustion exhaust or in the environment has been of significant interest because the presence of NO₂ has been correlated to the formation of acid rain, photochemical smog and some respiratory diseases including emphysema and bronchitis. Several types of NO₂ sensors have been developed including chemiresistive, potentiometric, and amperometric, based on metal oxides (for example, WO₃, SnO₂, ZnO, NiO and ZrO₂). However, metal oxide based sensors can require high operating temperatures in order to obtain decent sensitivities and faster response/recovery times. High operating temperatures can significantly reduce selectivity, while also increasing power consumption and device complexity.

Researchers at the University of California, Riverside have developed a NO₂ gas sensor operable at ambient conditions. The sensor includes functionalized feather-like tellurium (Te) nanostructures on single-walled carbon nanotube (SWNTs) networks.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	9,632,057	04/25/2017	2012-850

CONTACT

Grace Yee grace.yee@ucr.edu tel: 951-827-2212.

OTHER INFORMATION

CATEGORIZED AS

► Sensors & Instrumentation

Environmental Sensors

RELATED CASES

2012-850-0

University of California, Riverside
Office of Technology Commercialization
200 University Office Building,

Riverside, CA 92521

otc@ucr.edu

research.ucr.edu/

Terms of use | Privacy Notice | © 2018 - 2022, The Regents of the University of California