Request Information Permalink

A PROTEIN INHIBITOR OF CAS9

Tech ID: 29638 / UC Case 2019-008-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	11,795,208	10/24/2023	2019-008
United States Of America	Published Application	20210340199	11/04/2021	2019-008

BRIEF DESCRIPTION

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 nucleases, when complexed with a guide RNA, effect genome editing in a sequence-specific manner. RNA-guided Cas9 has proven to be a versatile tool for genome engineering in multiple cell types and organisms. There is a need in the art for additional compositions and methods for controlling genome editing activity of CRISPR/Cas9.

UC Berkeley researchers have discovered a new protein that is able to inhibit the Cas9 protein from Staphyloccocus aureus (SauCas9). SauCas9 is smaller than the frequently used Cas9 from Streptococcus pyogenes, which has a number of benefits for delivery. The inhibitor is a small protein from a phage and is capable of strongly inhibiting gene editing in human cells.

SUGGESTED USES

» Gene editing

ADVANTAGES

 \gg Limiting off-target editing, or other applications where reduced activity or rapid inhibition is desired

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS
- ▶ Genome Editing via LNP-Based Delivery of Efficient and Stable CRISPR-Cas Editors
- ▶ Type III CRISPR-Cas System for Robust RNA Knockdown and Imaging in Eukaryotes
- ► Cas12-mediated DNA Detection Reporter Molecules
- ▶ Improved guide RNA and Protein Design for CasX-based Gene Editing Platform
- Cas13a/C2c2 A Dual Function Programmable RNA Endoribonuclease
- ▶ RNA-directed Cleavage and Modification of DNA using CasY (CRISPR-CasY)
- CasX Nickase Designs, Tans Cleavage Designs & Structure
- ▶ In Vivo Gene Editing Of Tau Locus Via Liponanoparticle Delivery

CONTACT

Terri Sale terri.sale@berkeley.edu tel: 510-643-4219.

INVENTORS

» Doudna, Jennifer A.

OTHER INFORMATION

CATEGORIZED AS

- » Materials & Chemicals
 - » Biological
- » Medical
 - » Gene Therapy
- » Research Tools
 - » Nucleic Acids/DNA/RNA

RELATED CASES2019-008-0

- ► A Dual-RNA Guided CasZ Gene Editing Technology
- ▶ CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-VariPhi")
- ▶ Modifications To Cas9 For Passive-Delivery Into Cells
- ▶ RNA-directed Cleavage and Modification of DNA using CasX (CRISPR-CasX)
- ► Compositions and Methods for Genome Editing
- ▶ Split-Cas9 For Regulatable Genome Engineering
- NANOPORE MEMBRANE DEVICE AND METHODS OF USE THEREOF
- Methods to Interfere with Prokaryotic and Phage Translation and Noncoding RNA
- ► CRISPR CASY COMPOSITIONS AND METHODS OF USE
- ▶ Single Conjugative Vector for Genome Editing by RNA-guided Transposition
- ▶ Improved Cas12a Proteins for Accurate and Efficient Genome Editing
- ▶ CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- ▶ Engineered/Variant Hyperactive CRISPR CasPhi Enzymes And Methods Of Use Thereof
- ▶ Engineering Cas12a Genome Editors with Minimized Trans-Activity
- ▶ Methods Of Use Of Cas12L/CasLambda In Plants
- ▶ Type V CRISPR/CAS Effector Proteins for Cleaving ssDNA and Detecting Target DNA
- ▶ THERMOSTABLE RNA-GUIDED ENDONUCLEASES AND METHODS OF USE THEREOF (GeoCas9)
- ► Structure-Guided Methods Of Cas9-Mediated Genome Engineering
- ► Endoribonucleases For Rna Detection And Analysis
- ▶ Efficient Site-Specific Integration Of New Genetic Information Into Human Cells
- ► CRISPR-Cas Effector Polypeptides and Methods of Use Thereof
- ▶ Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE
- ▶ Compositions and Methods of Use for Variant Csy4 Endoribonucleases
- ▶ Identification Of Sites For Internal Insertions Into Cas9
- ▶ Methods and Compositions for Controlling Gene Expression by RNA Processing

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

 $ipira.berkeley.edu/\mid otl\mbox{-feedback@lists.berkeley.edu}$

© 2018 - 2023, The Regents of the University of California

Terms of use | Privacy Notice