

[Request Information](#)

[Permalink](#)

CAS12-MEDIATED DNA DETECTION REPORTER MOLECULES

Tech ID: 29426 / UC Case 2018-173-0

PATENT STATUS

Country	Type	Number	Dated	Case
United States Of America	Published Application	20210317527	10/14/2021	2018-173
European Patent Office	Published Application	3844303 A0	07/07/2021	2018-173

BRIEF DESCRIPTION

Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein (an effector protein, e.g., a type V Cas effector protein such as Cpf1) bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that continues to revolutionize the field of genome manipulation.

Cas12 is an RNA-guided protein that binds and cuts any matching DNA sequence. Binding of the Cas12-CRISPR RNA (crRNA) complex to a matching single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule activates the protein to non-specifically degrade any ssDNA in trans. Cas12a-dependent target binding can be coupled to a reporter molecule to provide a direct readout for DNA detection within a sample. UC Berkeley researchers have developed compositions, systems, and kits having labeled single stranded reporter DNA molecules that provide a sensitive readout for detection of a target DNA.

SUGGESTED USES

»

detecting a target DNA (double stranded or single stranded) in a sample

ADVANTAGES

»

increased speed and sensitivity of nucleic acid detection

CONTACT

Terri Sale
terri.sale@berkeley.edu
tel: 510-643-4219.

INVENTORS

» Doudna, Jennifer A.

OTHER INFORMATION

KEYWORDS

Detector, reporter, CRISPR, Cas12

CATEGORIZED AS

» [Biotechnology](#)

» [Genomics](#)

» [Imaging](#)

» [Molecular](#)

» [Materials & Chemicals](#)

» [Biological](#)

» [Medical](#)

» [Diagnostics](#)

» [Research Tools](#)

» [Nucleic Acids/DNA/RNA](#)

RELATED CASES

2018-173-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- [COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS](#)
- [Genome Editing via LNP-Based Delivery of Efficient and Stable CRISPR-Cas Editors](#)
- [Tissue-Specific Genome Engineering Using CRISPR-Cas9](#)
- [Type III CRISPR-Cas System for Robust RNA Knockdown and Imaging in Eukaryotes](#)
- [Cas9 Variants With Altered DNA Cleaving Activity](#)
- [Improved guide RNA and Protein Design for CasX-based Gene Editing Platform](#)

- Cas13a/C2c2 - A Dual Function Programmable RNA Endoribonuclease
- Miniature Type VI CRISPR-Cas Systems and Methods of Use
- RNA-directed Cleavage and Modification of DNA using CasY (CRISPR-CasY)
- CasX Nickase Designs, Tans Cleavage Designs & Structure
- In Vivo Gene Editing Of Tau Locus Via Liponanoparticle Delivery
- Methods and Compositions for Modifying a single stranded Target Nucleic Acid
- A Dual-RNA Guided CasZ Gene Editing Technology
- A Protein Inhibitor Of Cas9
- RNA-directed Cleavage and Modification of DNA using CasX (CRISPR-CasX)
- Compositions and Methods for Genome Editing
- IS110 and IS1111 Family RNA-Guided Transposons
- Methods to Interfere with Prokaryotic and Phage Translation and Noncoding RNA
- Variant Cas12a Protein Compositions and Methods of Use
- In Vitro and In Vivo Genome Editing by LNP Delivery of CRISPR Ribonucleoprotein
- CRISPR CASY COMPOSITIONS AND METHODS OF USE
- Single Conjugative Vector for Genome Editing by RNA-guided Transposition
- Improved Cas12a Proteins for Accurate and Efficient Genome Editing
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- Methods Of Use Of Cas12L/CasLambda In Plants
- Type V CRISPR/CAS Effector Proteins for Cleaving ssDNA and Detecting Target DNA
- THERMOSTABLE RNA-GUIDED ENDONUCLEASES AND METHODS OF USE THEREOF (GeoCas9)
- Variant TnpB and wRNA Proteins
- Efficient Site-Specific Integration Of New Genetic Information Into Human Cells
- Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE
- Compositions and Methods of Use for Variant Csy4 Endoribonucleases
- Immune Cell-Mediated Intercellular Delivery Of Biomolecules
- Methods and Compositions for Controlling Gene Expression by RNA Processing

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley, CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

<https://ipira.berkeley.edu/> | otl-feedback@lists.berkeley.edu

© 2018 - 2022, The Regents of the University of California

[Terms of use](#) | [Privacy Notice](#)