

# Technology Development Group

# Available Technologies

## Contact Our Team

Request Information

**Permalink** 

## **AGPAT5** as a Molecular Mediator of Insulin Resistance

Tech ID: 29036 / UC Case 2014-730-0

#### **SUMMARY**

UCLA researchers in the Departments of Medicine and Cardiology have identified a novel gene and pathway in the regulation of insulin sensitivity and discovered an inhibitor of this gene useful for treating AGPAT5-related diseases.

#### **BACKGROUND**

Insulin resistance (IR), a condition in which the body's cells fail to respond to insulin, is a significant worldwide health problem and leads to diseases such as Type-II diabetes, coronary artery disease, and fatty liver disease. The identification of efficacious therapies to improve insulin sensitivity is essential to the treatment of these metabolic diseases and conditions. However, the genetic factors that control and the variation of genetic factors that contribute to IR have not been well studied.

#### **INNOVATION**

UCLA researchers have identified a genetic variant, AGPAT isoform 5 (AGPAT5), that contributes to the development of insulin resistance in mouse models. Furthermore, they have developed an inhibitor and methodology for reducing expression of AGPAT5 mRNA and protein in vivo, allowing for the regulation of insulin and insulin sensitivity.

## **APPLICATIONS**

- Diagnostic marker of insulin resistance
- ► Regulation of insulin resistance
- ▶ Treatment of diabetes and other cardiometabolic diseases

## **ADVANTAGES**

- ► Help to reverse insulin resistance
- ▶ Treatment of conditions requiring regulation of insulin sensitivity

## **PATENT STATUS**

| Country                  | Туре          | Number     | Dated      | Case     |
|--------------------------|---------------|------------|------------|----------|
| United States Of America | Issued Patent | 10,364,433 | 07/30/2019 | 2014-730 |

## RELATED MATERIALS

Parks, Brian W., et al. "Genetic Architecture of Insulin Resistance in the Mouse." Cell Metabolism 21, 334. (2015).

## ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Myeloperoxidase-Deficient Mouse
- ▶ Development Of A Method For Endocrine Network Discovery Uncovers Peptide Therapeutic Targets

## CONTACT

UCLA Technology Development Group

ncd@tdg.ucla.edu tel: 310.794.0558.



#### **INVENTORS**

Lusis, Aldons J.

#### **OTHER INFORMATION**

#### **KEYWORDS**

diabetes, metabolic diseases, genetic
diseases, insulin resistance,
cardiometabolic disease, coronary
artery disease, cardiovascular,
obesity, metabolic syndrome

## **CATEGORIZED AS**

## **▶** Medical

- ▶ Disease: Cardiovascular and Circulatory System
- ▶ Disease: Genetic Diseases and Dysmorphic Syndromes
- Disease:

Metabolic/Endocrinology

► Therapeutics

**RELATED CASES** 

2014-730-0

**UCLA Technology Development Group** 

tdg.ucla.edu

10889 Wilshire Blvd., Suite 920,Los Angeles,CA 90095

Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu

© 2017 - 2019, The Regents of the University of California

Terms of use

Privacy Notice







