

# Technology Development Group

# Available Technologies

# Contact Our Team

**Request Information** 

Permalink

# **Composite Foam**

Tech ID: 28984 / UC Case 2016-102-0

#### **SUMMARY**

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel composite foam for impact applications.

#### **BACKGROUND**

Polymeric materials used for impact resistance often strain-harden, causing the skeleton struts and beams to stiffen up, the pores to collapse, and large stress buildup. This results in a sudden drop in the stress of the material with minimal energy absorption and momentum trapping. To circumvent these issues, phase transformation in a material is used as an energy dissipation mechanism, but current state of the art foams (i.e. Poron®) are only efficient at ambient conditions.

#### **INNOVATION**

Researchers led by Professor Vijay Gupta have developed a novel composite foam using preformed lattices. The two-component blend has enhanced impact absorption properties, particularly at higher pressures, making it useful for very high energy impacts. Likewise, this composite foam outperforms Poron® under similar conditions and displays similar impact performance under a wide range of cold and hot temperature conditions (-17 °C to 50 °C). This composite foam material can be made from organic or inorganic materials and any commercial foam (polyurethanes, D30, polyuria, etc.) can be used.

## **APPLICATIONS**

- ▶ Porous foam for impact applications
- Materials for cushioning or sealing
- ► Impact protection

## **ADVANTAGES**

- ➤ Outperforms Poron®
- Excellent performance for a wide range of temperatures (-17 °C to 50 °C)
- ▶ Efficiently manages incoming impact energy
- ▶ Superior impact attenuation properties
- ▶ Made from organic or inorganic materials
- Can use commercial foams

### STATE OF DEVELOPMENT

Composite foam materials have been fabricated and extensively tested.

### **PATENT STATUS**

| Country                  | Туре          | Number     | Dated      | Case     |
|--------------------------|---------------|------------|------------|----------|
| United States Of America | Issued Patent | 10,933,609 | 03/02/2021 | 2016-102 |

#### CONTACT

UCLA Technology Development Group

ncd@tdg.ucla.edu tel: 310.794.0558.



#### **INVENTORS**

▶ Gupta, Vijay

#### OTHER INFORMATION

#### **KEYWORDS**

Composite foam, two-component blend, porous foam, high pressure, wide temperature range, impact energy, cushioning, sealing, impact protection, impact attenuation

### **CATEGORIZED AS**

- **▶** Engineering
  - ▶ Engineering
  - ▶ Other
- ► Materials & Chemicals
  - Composites
  - ▶ Other

RELATED CASES

2016-102-0

# Gateway to Innovation, Research and Entrepreneurship

# **UCLA Technology Development Group**

10889 Wilshire Blvd., Suite 920,Los Angeles,CA 90095 tdg.ucla.edu

Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu

© 2017 - 2021, The Regents of the University of California

Terms of use Privacy Notice









