

# Technology Development Group

# Available Technologies

## Contact Our Team

Request Information

A Novel ER Beta Ligand Prodrug to Treat MS and Other Neurodegenerative Diseases

Tech ID: 27424 / UC Case 2017-168-0

## CONTACT

UCLA Technology Development Group

Permalink

ncd@tdg.ucla.edu tel: 310.794.0558.



#### **INVENTORS**

▶ Voskuhl, Rhonda R.

#### OTHER INFORMATION

#### **KEYWORDS**

Multiple sclerosis, estrogen receptor beta, ER, ERß, neuroprotection, central nervous system, CNS, bloodbrain barrier, small molecule therapy

## CATEGORIZED AS

- **▶** Medical
  - ▶ Disease: Autoimmune and Inflammation
  - ▶ Disease: Central Nervous

System

▶ New Chemical Entities,

Drug Leads

▶ Therapeutics

### RELATED CASES

2017-168-0

#### **SUMMARY**

Researchers from the Department of Neurology and the Department of Chemistry and Biochemistry at UCLA have developed a novel ERβ ligand prodrug that is structurally designed to more easily cross the blood-brain barrier for treatment of multiple sclerosis.

#### **BACKGROUND**

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation and demyelination of the central nervous system. Current MS treatments have immunomodulatory effects and reduce relapse rates in MS patients, but have only modest effects on disability progression. Recent studies have shown that treatment with estrogens or estrogen receptor (ER) specific-ligands in the mouse model for MS (experimental autoimmune encephalomyelitis (EAE)) are neuroprotective and could ameliorate the effects of MS. Specifically, ERβ ligand-treated animals exhibited preserved axons and myelin compared with vehicle-treated animals. Unfortunately, the concentration of diarylpropionitrile (DPN), the generic ERβ ligand, needed to ameliorate EAE in mice is relatively high. The required dosage results in high off-target effects and is therefore unsafe for clinical use. The need for such large amounts of this drug to treat MS is speculated to be a result of low passage through the blood-brain barrier. In order for ERβ ligands to become clinically useful in the treatment of MS, they must have increased blood-brain barrier permeability and be effective at lower concentrations.

#### **INNOVATION**

Researchers at UCLA from the Department of Neurology and the Department of Chemistry and Biochemistry have developed a novel ERβ ligand prodrug that crosses the blood-brain barrier more effectively than DPN. Dosing with this ERβ ligand prodrug results in lower peripheral blood concentration of ER ligand, thereby lessening the exposure of breast, uterus and other off-target tissues to the active molecule. After the drug moves into the central nervous system, it is cleaved and becomes active, resulting in higher brain and spinal cord concentrations over the hours that follow.

#### **APPLICATIONS**

Monotherapy for multiple sclerosis

#### **ADVANTAGES**

- ▶ Neuroprotective
- ▶ Greater impact on permanent disabilities such as cognitive dysfunction, walking problems, balance problems, visual loss, or other symptoms than currently available drugs
- ▶ Increased ability to cross blood-brain barrier compared to other ERβ ligands
- ▶ Effective at lower concentrations

#### STATE OF DEVELOPMENT

In vivo testing on mouse model of MS (EAE) shows that initial concentrations of active drug were lower in the blood but increased in the central nervous system over multiple hours. The novel ERβ ligand prodrug was also more effective at treating EAE in mice.

#### **PATENT STATUS**

| Country                  | Туре          | Number            | Dated      | Case     |
|--------------------------|---------------|-------------------|------------|----------|
| European Patent Office   | Issued Patent | 3939581           | 06/11/2025 | 2017-168 |
| United States Of America | Issued Patent | 11,622,954        | 04/11/2023 | 2017-168 |
| Switzerland              | Issued Patent | 3509583           | 06/30/2021 | 2017-168 |
| Germany                  | Issued Patent | 60 2017 041 407.7 | 06/30/2021 | 2017-168 |
| France                   | Issued Patent | 3509583           | 06/30/2021 | 2017-168 |
| United Kingdom           | Issued Patent | 3509583           | 06/30/2021 | 2017-168 |
| United States Of America | Issued Patent | 10,980,767        | 04/20/2021 | 2017-168 |

▶ Wisdom AJ, Cao Y, Itoh N, Spence RD, Voskuhl RR. Estrogen receptor-ß ligand treatment after disease onset is neuroprotective in the multiple sclerosis model. J Neurosci Res. 2013;91(7):901-8.

#### ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Pregnancy Hormone-Containing Combination Products for the Continuous Treatment of Autoimmune Diseases

# Gateway to Innovation, Research and Entrepreneurship UCLA Technology Development Group 10889 Wilshire Blvd., Suite 920,Los Angeles,CA 90095 https://tdg.ucla.edu Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu