

Request Information

Permalink

Protein Kinase C Epsilon Small Molecule Inhibitors to Treat Pain, Anxiety, Alcoholism, and Nicotine Addiction

Tech ID: 27379 / UC Case 2012-125-0

INVENTION NOVELTY

This invention provides new inhibitors to protein kinase C epsilon (PKC ϵ) for the treatment and prophylaxis of various diseases

such as pain, anxiety, alcoholism, inflammation, cancer, diabetes, and other conditions.

VALUE PROPOSITION

Members of the PKC family have been implicated in diseases/disorders that afflict a significant portion of the human population. In particular, PKCε has been shown to play a role in pain, anxiety, alcoholism, inflammation, cancer, diabetes, and other conditions. Compounds that inhibit PKCε are expected to have analgesic, anxiolytic, anti-addictive, and anti-inflammatory benefits. However, there are no selective small molecule inhibitors of PKCε available.

This novel invention provides the following advantages:

- **Novel** family of inhibitors that can target PKCε and other isoforms
- Highly selective, small molecule inhibitors
- Inhibit PKCε in the nanomolar range
- Preferred oral administration route

TECHNOLOGY DESCRIPTION

Researchers at the University of California, San Francisco have identified novel family of inhibitors to PKCs and in particular the PKCɛ isoform. The compounds also act as inhibitors to novel PKC theta. The compounds are prepared from amine- or carboxylic acid- containing intermediates that react with complementary reactive molecules to form the desired compound. Tested compounds show selective and specific inhibition of PKCɛ in both *in vitro* and *in vivo* models.

APPLICATION

-Pain

-Anxiety

-Addiction

CONTACT

Todd M. Pazdera todd.pazdera@ucsf.edu tel: 415-502-1636.

INVENTORS

- Levine, Jon D.
- Messing, Robert O.
- Pleiss, Michael A.

OTHER INFORMATION

KEYWORDS

Protein kinase C epsilon,

Inhibitors, Small molecules,

Therapeutics, Anxiety,

Alcoholism, Pain,

Inflammation, Cancer,

Diabetes, Ischemia

CATEGORIZED AS

Medical New Chemical Entities, Drug Leads Therapeutics

RELATED CASES

2012-125-0

-Inflammation

-Cardiac and cerebral ischemia

-Cancer

-Diabetes

LOOKING FOR PARTNERS

To develop & commercialize this technology as oral medications to treat pain, anxiety, alcoholism, and nicotine addiction

STAGE OF DEVELOPMENT

Preclinical

RELATED MATERIALS

Maiya, R., McMahon, T., Wang, D., Kanter, B., Gandhi, D., Chapman, H. L., ... & Messing, R. O. (2016). Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice. Neuropharmacology, 107, 40-48.

DATA AVAILABILITY

In vivo and in vitro data

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	9,376,423	06/28/2016	2012-125
United States Of America	Issued Patent	8,785,648	07/22/2014	2012-125

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ NOVEL MOLECULAR TARGET AND NOVEL ANALGESIC COMPOUNDS FOR PAIN

ADDRESS UCSF	CONTACT Tel:	CONNECT Follow in Connect
Innovation Ventures	innovation@ucsf.edu	
600 16th St, Genentech Hall, S-272,	https://innovation.ucsf.edu	© 2017 - 2022, The Regents of the University
San Francisco,CA 94158	Fax:	of California
		Terms of use Privacy Notice