

TECHNOLOGY TRANSFER OFFICE

AVAILABLE TECHNOLOGIES

CONTACT US

Request Information

Permalink

Efficient Solar Energy Conversion to Electricity

Tech ID: 27340 / UC Case 2016-721-0

ABSTRACT

Researchers at the University of California, Davis have developed a novel design for a solar power converter. The system uses an efficient selective absorber to harvest solar radiation.

FULL DESCRIPTION

Today, photovoltaic (PV) panels generate most of the market's renewable electricity. Unfortunately, PV generation has low conversion efficiencies, \sim 20%. Because solar cells have a theoretical maximum efficiency of 33%, they discard about 70% of sunlight as heat.

Researchers at the University of California, Davis have developed a novel absorber to convert nearly 100% of sunlight by using a low emissivity selective absorber, a material with high absorption in the solar spectrum and low emission in the infrared. The minimal infrared emission allows the material to retain more solar energy as heat. By using a heat engine, the harvested heat can then be used for efficient electrical generation. In theory, a selective absorber photothermal system can achieve efficiencies as high as 50%, more than doubling current PV efficiency.

APPLICATIONS

- ▶ Solar power conversion to electricity
- ► Photothermal applications

FEATURES/BENEFITS

- ▶ Simple in design when compared to other methods
- ▶ Does not require ultra-high concentration of sunlight
- ▶ Eliminates the need for passive or active cooling systems

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20190203661	07/04/2019	2016-721

CONTACT

Andrew M. Van Court amvancourt@ucdavis.edu tel: .

INVENTORS

- ► Heredia, Cristian
- ► Woodall, Jerry M.

OTHER INFORMATION

KEYWORDS

energy conversion, solar power, hybrid power systems, photovoltaic systems, silicon, photothermal, selective absorber, low emissivity

CATEGORIZED AS

- Energy
 - ▶ Solar
- **▶** Environment
 - ▶ Other
- ▶ Engineering
 - Engineering

RELATED CASES

2016-721-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Silicon Solar Cells that Absorb Solar Photons Above 2.2 eV and are Transparent to Solar Photons Below 2.2 eV
- ▶ Low Heat Loss Latent Heat Battery (LHB)

Tel: 530.754.8649

Davis,CA 95618

https://research.ucdavis.edu/technology-

transfer/

Fax: 530.754.7620