

[Request Information](#)[Permalink](#)

Closed-Loop Stimulation Device for Enhancing Motor Function After Stroke

Tech ID: 25993 / UC Case 2016-130-0

INVENTION NOVELTY

This novel brain stimulation device enhances motor function after stroke by modulating the neural network to be more excitable in a task-dependent manner.

VALUE PROPOSITION

Stroke is the leading cause of motor disability in the United States, affecting over 700,000 patients each year. While there have been important strides taken towards optimizing rehabilitation, a substantial proportion of patients continue to experience significant disability. Therefore, it is critical to develop novel technologies to improve motor function after stroke.

Although other neuromodulatory techniques (tDCS: transcranial direct current stimulation, TMS: transcranial magnetic stimulation, ECS: epidural cortical stimulation, PNS: peripheral nerve stimulation) have shown some promise in promoting motor learning and recovery, results have been inconsistent and marginal. Importantly, these techniques use an 'open-loop stimulation' design where the electric stimulation is continuously turned on for an extended period of time. As a result stimulation is uncoupled to behavior and is unsuited for task-based function.

TECHNOLOGY DESCRIPTION

UCSF investigators have developed a closed loop stimulation neural interface device to restore function and reduce disability after stroke for patients with moderate impairment. "Closed-loop" stimulation (CLS) directly targets and enhances specific patterns of neural activity, coupling electrical stimulation to task-based brain activity. UCSF researchers have identified neural activities associated with motor learning and function and have generated algorithms to target and enhance stimulation. Using a rodent model of stroke, researchers have shown that their CLS technique generates improved forelimb reaching function after stroke.

LOOKING FOR PARTNERS

To develop & commercialize the technology as medical device

STAGE OF DEVELOPMENT

Pre-clinical

CONTACT

Kristin A. Agopian
kristin.agopian@ucsf.edu
tel: [415-340-2619](tel:415-340-2619).

INVENTORS

- ▶ Ganguly, Karunesh
- ▶ Gulati, Tanuj
- ▶ Ramanathan, Dhakshin

OTHER INFORMATION

KEYWORDS
Stroke, Brain injury, Motor learning, Motor recovery, Close-loop stimulation, Brain stimulation, Neural plasticity

CATEGORIZED AS

- ▶ [Biotechnology](#)
- ▶ [Health](#)
- ▶ [Medical](#)
- ▶ [Devices](#)
- ▶ [Disease: Central Nervous System](#)

RELATED CASES

2016-130-0

RELATED MATERIALS

► Not available at this time

DATA AVAILABILITY

Animal data available under CDA

PATENT STATUS

Country	Type	Number	Dated	Case
United States Of America	Issued Patent	11,147,971	10/19/2021	2016-130

ADDRESS

UCSF

Innovation Ventures

600 16th St, Genentech Hall, S-272,
San Francisco, CA 94158

CONTACT

Tel:

innovation@ucsf.edu

<https://innovation.ucsf.edu>

Fax:

CONNECT

 Follow Connect

© 2016 - 2023, The Regents of the University
of California

[Terms of use](#) [Privacy Notice](#)